
Image Database Management System Design

Considerations, Algorithms and Architecture

Niels Nes

Contents

1 Introduction 7
1.1 RDBMS vs IDBMS . 8
1.2 Contributions and Thesis Outline 9

2 Image Databases 13
2.1 Multi-Media Database Systems 13

2.1.1 Image Storage . 14
2.1.2 Image Operations . 17
2.1.3 Features . 22
2.1.4 Image Semantics . 24
2.1.5 Image Queries . 25

2.2 DBMS . 27
2.2.1 Extensible . 27
2.2.2 Main Memory . 28
2.2.3 Objects versus Sets . 28

2.3 Architecture of Monet . 29
2.3.1 Monet Architecture 31
2.3.2 Monet Interface Language 32
2.3.3 Monet Extension Language 34
2.3.4 new primitives . 37
2.3.5 New Search Accelerators 39

2.4 State of the Art of Image Database Systems 39
2.4.1 Commercial Image Databases 39
2.4.2 Commercial Image Retrieval Systems 42
2.4.3 Research Image Retrieval Systems 43
2.4.4 Image indexing techniques 45
2.4.5 Requirements . 47

3 Database Assisted Image Processing 49
3.1 Data Structures . 49
3.2 Primitives . 51
3.3 Benefits of BAT representation 52

3.3.1 Image Integration . 53

3

4 CONTENTS

3.3.2 Simplification of Data Structures 54
3.3.3 Query Optimization 54
3.3.4 Parallelism . 57
3.3.5 Performance and Storage Improvements 57

3.4 Experiments . 59
3.5 Requirements . 60
3.6 Conclusions . 61

4 The Image Retrieval Algebra 63
4.1 Introduction . 63
4.2 Image Retrieval by Content 65

4.2.1 Multi-Level Signature 66
4.2.2 Data Model for MLS Image Database 67
4.2.3 Stop Condition . 68
4.2.4 Querying the image database 69
4.2.5 Prototype and Experiment 71
4.2.6 Conclusion . 72

4.3 Segment Image Indexing . 72
4.3.1 Segment Indexing . 73
4.3.2 The Query Primitives 74
4.3.3 Experimental results 75
4.3.4 Conclusions . 78
4.3.5 Image Retrieval Algebra 79
4.3.6 Logical Image Data Model 80
4.3.7 Physical Segment Representation 80

4.4 Algebraic Primitives . 82
4.5 Acoi Image Retrieval Benchmark 84
4.6 Initial Performance Assessment 86
4.7 Conclusions . 87

5 Image Analysis: A case study 91
5.1 The line clustering problem 92

5.1.1 Clustering Hierarchy 94
5.1.2 Clustering Factors . 94
5.1.3 Clustering Function 95

5.2 Database Optimization . 96
5.2.1 Mathematical Optimization 97
5.2.2 Split based algorithm 99

5.3 A hybrid solution . 99
5.3.1 Database representation 99
5.3.2 Data Model . 100
5.3.3 Clustering Algorithm 100

5.4 Database Solution . 103
5.4.1 Line cluster model . 103

CONTENTS 5

5.4.2 Experiments and Results 105
5.5 Conclusion . 106

6 Fitness Join 109
6.1 Introduction . 109
6.2 Motivation . 110

6.2.1 The Ballroom Example 110
6.2.2 Fitness Joins . 112
6.2.3 Application domains 114

6.3 Fitness Join Algorithms . 115
6.3.1 SQL Framework . 115
6.3.2 Monet solutions . 117

6.4 Query Optimization Schemes 121
6.4.1 Mathematical Query Optimization 121
6.4.2 Data structures for fitness joins 123

6.5 Evaluation . 123
6.5.1 Dance partners by age 123
6.5.2 Dance partners by repertoire match 124

6.6 Conclusion . 125

7 Metric Indexing 127
7.1 Introduction . 127
7.2 Index Structures for Spatial Joins 128
7.3 Triangular Inequality . 129

7.3.1 Using the Triangular Inequality 130
7.4 Metric index structure . 131

7.4.1 The reference points 131
7.4.2 The optimized distance select 132

7.5 Effectiveness of the metric index 133
7.6 Experimentation . 135
7.7 Conclusions . 138

8 Summary 141
8.1 General Research Directions 143

Acknowledgements 145

6 CONTENTS

Chapter 1

Introduction

Relational Database Management Systems (RDBMS) are commonly used
for many business application for almost three decades. Their user friendly
declarative query language and abstract logical view on data organization
are the main reasons for this success. This declarative query language re-
leases business application developers from dealing with implementation de-
tails. They only have to focus on what information is needed, not on how to
get it. The later is the task of a query language compiler using a relational
algebra as a sound mathematical basis, and gives many ways of optimization.

Since commonly available hardware makes it possible to capture and
store images, a need for databases with image management capabilities
arose. Large collections of images can easily be obtained from sources like
CD-roms, DVD and the Internet. Searching through these collection for
particular images is a complex task which requires a proper image retrieval
query language. A research problem still lacking general acceptable solu-
tions.

Image databases can be used for many applications. Simple examples
include presentations, games and educational software. We could think of
an educational program teaching students a foreign language or taking an
exam on the traffic rules. In these applications the image database is used as
a persistent image store, which gives the user physical data-independence.
The image is physically stored somewhere, but the user/application is not
interested in its whereabouts. Instead the image can be retrieved using a
logical name. Physical data-independence permits a database administrator
to move the image without the application noticing it. The advantage is
that the images could be scattered over many disks, distributed over various
file systems, located worldwide.

Another application domain which would benefit from image database
support is image analysis. Image analysis applications try to determine the
semantics of an image. The image analysis process involves, segmentation, of
images into objects, clustering objects, searching and data reduction. These

7

8 CHAPTER 1. INTRODUCTION

operations are strongly supported by database systems. In the image anal-
ysis domain each image is a scene taken from the real world. The transition
from a real ’continues’ world to a ’digital’ world introduces many challeng-
ing problems. The image analysis domain could benefit substantially from
using an image database management system.

Image analysis applications require that images can be accessed on other
methods than logical names. Retrieval of stored images requires access meth-
ods based on annotations or the image content. Therefore, new query prim-
itives and search methods are needed. A complicating factor is the lack
of accurate data. The data involved, both the image itself and the data
derived, are fuzzy since perfect image capturing devices do not exist. Also
images are subject to varying interpretations. An image will be interpreted
different by any other person, caused by the persons background knowledge.

Image database researchers focus on an important subset of applications;
called Image Retrieval by Content. These applications try to retrieve images
based on the content of the images. A recurring querying scheme is ’query
by example’. Given a sample image the system finds a small set of images
with similar content. The critical points here are what is considered similar
and what content aspects, called features, should be used.

Similarity is often defined as a mathematical function on the features.
These so called similarity measures make calculation of similarity possible.
Many different similarity measures have been proposed, examples can be
found in [63]. Histogram intersection [106] and weighted Euclidean distance
[41] are among the most commonly used measures.

To facilitate image queries a two step process is used. First the images
are loaded in the database. Secondly for each image feature values are
extracted, a fixed set of features is used. The image queries are expressed
in terms of these features and selection is based on predefined similarity
measures. Most image retrieval systems provide limited control over the
features used and definition of similarity measures.

1.1 RDBMS vs IDBMS

Image database management systems (IDBMS) differ from traditional data-
bases management systems in major ways. The first difference is the data
complexity. Transaction records are composed of simple data elements like
names and numbers. Images, on the other hand, are complex, large arrays
of complex values. Also the derived data in an IDBMS is complex, for ex-
ample at we the contour of an object in an image can be described using a
polygon.

On top of the complex data problem is the problem of large object sizes.
To illustrate, image databases handle large amounts of sizeable objects (from
a few Kilo bytes to several Mega bytes). The granularity of transactions

1.2. CONTRIBUTIONS AND THESIS OUTLINE 9

ranges from a few hundred to a few Kilo bytes. These large data elements
results in new requirements for the IDBMS physical storage mechanism.

Query formulation in image databases is more complex. The image do-
main brings along a large set of operations. The combination of this set
of operations inside the realm of relational operators gives an explosion of
possibilities making it difficult to oversee. The interplay between the various
operators is difficult to predict.

The semantics of the data stored in an IDBMS is unknown. In a tradi-
tional transaction processing application all data values are understood by
casual users. When we query the database for all persons with age between
18 and 25 we know exactly what we get back. Contrary an image query is
worth a thousand words conveying a multitude of semantics. It may well
have various interpretations. These semantics have no mathematical basis.
This complicates posing and answering queries. A related issue is that data,
especially derived data is fuzzy. Many measurement errors may have altered
it. The image may largely differ from the real world scene from which it
is taken. Therefore, the database should be able to handle incomplete and
noisy data.

The last difference from traditional database systems lays in the way
the databases are used. The general use of a database in business applica-
tions involves many transactional updates, such as inserting, updating and
deleting values. In image database systems updates tend to be much more
incremental. Once an image is inserted there is little chance that the im-
age is changed or deleted. Therefore, image database applications are much
more query intensive than traditional systems. Knowing these characteris-
tics makes it possible to improve the overall system performance.

1.2 Contributions and Thesis Outline

The main contribution of this dissertation is an exploration of facilities
needed for the design and construction of a successful image database sys-
tem. Portions have been implemented in the context of the Monet DBMS to
obtain a first assessment of the choices made. However, a complete IDBMS
is beyond the scope of this thesis, for it requires a large, multi person, engi-
neering effort. The facilities needed are organized by chapter as follows.

Chapter 2 introduces the basic requirements for an image database, i.e.
image storage and management. We founded the requirements on the theory
of the image algebra, which supplies us with a complete set of image types
and operations.

In Chapter 3 we introduce the physical representation for our image
data type. We map the image processing operations on relational operators
making it possible for query optimizers to optimize these operations. Also
we show possible optimizations of mapping both in storage and processing

10 CHAPTER 1. INTRODUCTION

requirements.
To obtain the requirements for image retrieval we looked at new image

retrieval methods: the multi-level signature and region image indexing.
One requirement obtained using these experiments is the need for a spe-

cial image retrieval query language. Therefore, we developed the image re-
trieval algebra which forms the proper basis for such a language. In Chapter
4 this algebra is introduced. Many new database primitives are introduced
and their relevance is shown via a preliminary benchmark definition geared
at image retrieval queries.

In Chapter 5 we proved the applicability of image databases in the field of
image analysis, using a case study. In this study we looked at line clustering,
a basic step in many image analyzing applications. We showed databases
are effective; they reduce the programming effort and stimulate code reuse,
and they are efficient; our implementation proved significant performance
improvement over the earlier attempts in this area.

The inherently fuzzy data as found in this field lead to algorithms which
search for similar objects. To handle such queries better we introduce in
Chapter 6 a new query predicate, the fitness join. Making this key operator
explicit at the algebra level provides a handle to optimize its processing. A
few directions for optimization are described.

In Chapter 8 we introduce an indexing structure, the metric index struc-
ture, to optimize this fitness join operation at a minimum of cost overhead.
We showed that metric indexing is a low cost index structure outperforming
the R-tree[52]. This structure uses the triangular inequality to reduce the
number of calculations of a fitness function.

The Chapters mark a route to a successful IDBMS. The individual steps
taken have been commented upon by the research community These Chap-
ters were published earlier in other forms:

• The Multi-level Signature image retrieval method was explained in
the paper, ’Database support for image retrieval using spatial-color
features’ [78].

• An earlier version of the Region Image Indexing was explained in the
paper, ’Region-based Indexing in an Image Database’[79].

• The paper ’The Acoi Algebra: A Query Algebra for Image Retrieval
Systems’[80] introduced the first image retrieval algebra.

• In the paper ’Database support for line clustering’[81] image databases
were first introduced for image analyzing tasks.

• Metric indexing was explained in the paper ’Metric Indexing to Im-
prove Distance Joins’[82].

• The fitness joins are explained in ’Fitness joins in the Ballroom’[66].

1.2. CONTRIBUTIONS AND THESIS OUTLINE 11

Other related publications not discussed in this thesis:

• The papers, ’Image Retrieval Using Linear Greyscale Granulometries’[35]
and ’Color Image Texture Indexing’[36] explain image retrieval tech-
niques where texture is described using object granularity.

In Chapter 8 we summarize the results of the thesis and look forward
for further research possibilities.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Image Databases

In this chapter we explain what kind of database management system ap-
propriate is to construct and manage image collections. In particular, we
introduce a requirement list for assessing a DBMS for deployment in this
area. Subsequently we introduce our experimentation platform, the Monet
DBMS[8], in more detail. We conclude with a short evaluation of com-
mercial database and image retrieval systems, including Monet, against our
requirement list.

2.1 Multi-Media Database Systems

The research field of image database systems can be characterized as a subset
of the field of multi-media database systems. Multi-media database man-
agement systems are software systems dealing with data both with well-
and ill-defined semantics. Data with well-defined semantics is usually called
structured data, examples are numbers and formatted records. Data with
ill-defined semantics is usually called unstructured data, such as text, au-
dio, image and video. Example application areas for Multi-Media database
management systems are Digital Libraries, Video on demand systems and
news archives.

The combination of multiple media imposes additional requirements on
the DBMS, because they typically can not be dealt with in isolation. The
combination of multiple media gives additional valuable information and
may therefore be easier to understand. Another important issue is quality
of service, i.e. the clients of the multi-media database may not be able to
handle a fast multi-media stream.

In this thesis, we restrict our research to a single media type, namely still
images from the context of database research. Although this greatly reduces
the domain, it makes the project manageable within the limited resources
given.

We belief that progress obtained in the design of image database man-

13

14 CHAPTER 2. IMAGE DATABASES

agement systems carries over to the subsequent extensions to deal with other
media types. The trajectory followed results in a requirements list for image
databases. Many of these requirements also hold for multi-media databases
at large.

The basic functionality to support Image Database Management Systems
centers around the following issues:

• Image Storage

• Image Operations

• Derived Image Data

• Image Semantics

• Image Queries

These issues are elaborated upon in the next sections.

2.1.1 Image Storage

The first requirement for an Image Database Management Systems (IDBMS)
is, of course, the ability to store images. The image processing community
uses many image file formats. Well known examples include: TIFF, GIF,
PNG, JPEG, PPM, BMP, PICT and XPM. These formats have been de-
signed for specific applications or as an attempt to set a standard for image
data exchange, however, non is general enough to support all image types.
To illustrate, many of these file formats, such as GIF, PNG, JPEG, PICT
and XPM were designed for viewable images, i.e. mono-chrome, gray scale
and color images. This restricted domain makes them not suited for storing
images in an IDBMS. For example, satellite images and stereo images can
not be stored using these formats. Moreover, the image processing com-
munity still lacks a standard image file format, i.e. there does not exist an
(extensible) data model to reason about images. As a result, we are chal-
lenged to come up with an appropriate image representation to cater for all
intended use. For such an image representation scheme, the DBMS should
provide an abstract data type (ADT) facility which provides for:

1. Extensible representation and algebra

2. Multiple views on components to support segmentation.

3. Cheap (de)compress functions.

4. Easy Input/Output Facilities

2.1. MULTI-MEDIA DATABASE SYSTEMS 15

Extensible Representation and Algebra

In our search for a flexible image representation scheme, we came across
the image algebra[90]. Before we continue with the discussion of our image
representation of choice we give a synopsis of its concepts.

The image algebra[90] is a mathematical theory focused on the analysis
and transformation of digital images. The main goal was to define a com-
prehensive and unified theory of image transformations, image analysis and
image understanding.

The image algebra is defined as a heterogeneous algebra. Such an algebra
is defined as follows:

Definition. An algebra A is a pair A = (F ,O), where

1. F = {Fλ}λ∈Λ is a family of non-empty sets of different
types of elements and the subscripts λ are members of some
indexing set Λ, and

2. O = {Ok}k∈K is a set of finitary operations (for some in-
dexing set K), where each Ok ∈ O is a mapping of the
Cartesian product of some of the Fλ’s to another.

The elements Fλ of F are called the sets of operands of A, and the elements
Ok ∈ O are called the operators of (or operations on) A.

An Algebra A is called a homogeneous or single valued algebra, if F con-
tains only one element i.e., F = {F}, otherwise A is called a heterogeneous
or many valued algebra.

The Image algebra[90] defines an image as follows.

Definition. Let F be a homogeneous algebra and X a topo-
logical space. An F -valued image on X is any element of FX .
Given an F -Valued image a ∈ FX , then F is called the set of
possible range values of a and X the spatial domain of a.

It is often convenient to let the ”graph” of an image a ∈ FX represent a.
The graph of an image is also referred to as the data structure representation
of the image. Given the data structure representation a = {(x, a(x)) : x ∈
X}, then an element (x, a(x)) of the data structure is called a picture element
or pixel. The first coordinate x of a pixel is called the pixel location or image
point, and the second coordinate a(x) is called the pixel value of a at location
x.

Many digital images require the topological space X to be a subspace of
Z2. A sequence of images can be modeled using X = Z3, with x ∈ X of the
form x = (x, y, t), where the first coordinates (x, y) denote spatial location
and where t denotes a time variable.

The value set F can be replaced with Z2k or with (Z2k ,Z2l ,Z2m). The
first provides us with digital integer-valued images of k-bits. The second
provides us with digital vector-valued images.

16 CHAPTER 2. IMAGE DATABASES

The image algebra defines a logical image representation, we will follow
this definition of an image. To use a logical representation calls for an
implementation, i.e. a physical representation. We elaborate more on our
physical image representation including performance analysis in Chapter 3

Color Models

Mono-chrome and grayscale images can easily be represented using F = 0, 1
and F = Z. More problems arise when we try to model color images.
Physically color is a composition of light signals of different wavelengths.
These signals are discretized and represented using so called color models.
Many such models exist and each has its strong and weak points, see [45].
Examples are RGB, CMY, HSV, HSI, L*a*b*, XYZ, UVW and xyz. The
RGB and CMY models are used for output devices, such as displays and
printers. XYZ is a color model which is device independent. The L*a*b* and
L*u*v* are perceptually uniform, i.e. distances in these spaces correspond
to human perceptual differences. The HSV and HSI are intuitive to the
user, Hue is the bare color, Saturation is the infection of this hue with other
colors, and I is the intensity of the color.

The different models have different applications, RGB and CMY color
models are used for output. For many image operations other color models
are more appropriate. Therefore, conversion primitives from one color model
into another is a pre-requisite for any image analysis system.

An additional requirement for color images is to store the color model
information. This can be done directly, using a separate table, or implicitly,
using a special pixel value type.

From a semantic point of view there is no reason to differentiate among
monochrome, grayscale or color images. They are all images. They can all
be stored using (the more general) color images. We therefore like to treat
all images equal. Unfortunately the theory for color images is less evolved
then for gray and monochrome images. This makes explicit type coercion
necessary.

Image Segments

Segments represent interesting parts of an image. Many image processing
applications first reduce their problem by looking only at the segment or re-
gion of interest within an image. This pre-processing can reduce the resource
requirements substantially. This leads to the image database requirement
of segment representation and segment construction.

As a consequence images can also be seen as a collection of disjoint seg-
ments. Each segment would contain different, but interesting information.
This alternative view on images and segments indicates the concepts are
closely related. To fully exploit this resemblance the concepts should be

2.1. MULTI-MEDIA DATABASE SYSTEMS 17

represented using the same logical representation. Image operations should
therefore also work on segments without additional work.

Our image representation, a mapping from a spatial domain X to a
domain of range values F , fits both concepts of images and segments. Op-
erations to segment an image would therefore easily return new images.

Image Compression

An image database will store lots of images, taking up lots of disk space.
Compression techniques to reduce storage can be used. Two alternatives
exist, we can compress each image in isolation or we can compress a set
of images together. The second will result in better overall reduction, but
the first makes access to a single image still reasonably fast. This choice
between performance and storage will depend on the applications using the
database. Therefore, the database administrator should be able to make
this choice. We therefore support compression on the image and table level.

We aim with image set compression on sets of images that contain very
similar images. Therefore, we envision of set image compression using a base
image and image differences. Each image in the set is stored based on a base
image. The differences are computed and stored. Each resulting image can
then again be compressed using the single image compression techniques. A
3D wavelet-based approach over the set might be effective.

Input/Output Facilities

Another important requirement for an image ADT are easy input and output
facilities. We support input from and output to various image file formats.
This makes it possible to access the large number of images currently stored
in these formats. Support for output into these types makes it possible
to reuse the huge amount of existing software. In our image input/output
module we support conversion of our image ADT to JPEG, GIF, TIFF and
PPM.

2.1.2 Image Operations

From a database perspective having a single image data type in the query
language is ideal. It greatly simplifies query construction and optimization.
This single image data type should come with a complete set of operations,
such that by combining operations all relevant logical image operations can
be performed.

The Image Algebra [90] defines a complete set of operations for all image
types. It consists of operation on images and templates. All operations use
basic mathematical functions on the spatial domain or range value domain.
Therefore, the semantics are properly determined by the semantics of these
basic operations.

18 CHAPTER 2. IMAGE DATABASES

For some image types considered in practice, however, most of the math-
ematical operations have no clear semantics. For example mathematical
morphological operations on multi channel images, such as color images,
have no proper theoretical background yet. Also there is no consensus on
the linear filter theory for these images. In these directions progress is made
as can be read in [21], [107] and [37].

Although a complete set of operations is known for the individual image
types, their results are usually very different. A histogram of a color image
is different from a histogram of a gray scale image. This complicates any
query language greatly.

Dynamic resolution of the result types would make query optimization
impossible. A query optimizer needs to know the result types of all opera-
tions to be able to make a complete query graph. With a single image type
this is impossible. Therefore, we need to express an image as a complex
data type which is uniquely described by the type of its spatial domain and
its range domain. This requires a polymorphic image data type.

Operations

Following the image algebra [90] we can classify the operations on images in
the following categories.

• Restriction and Extension

• Induced pixel operations

• Reduction Operations

• Spatial Operations

• Template Image Operations

• Template Operations

The image algebra defines two operations, domain(a) and range(a), to
extract point sets and value sets from a particular image, a. The domain of
an image is the set of points expressing the spatial extent of the image. The
range of an image are the range values of an image, for example the gray
values or colors of the image.

Image Restriction removes pixels from an image. This can be realized
through both the spatial domain and range value domain. Given a set of
points, an image can be reduced to include only these positions. Or given a
set of range values, an image can be restricted to only include these values.
The inverse of image restriction is image extension. This operation adds
pixels to an image, which it not yet contains. A combination of image
restriction and extension could be used for replacing parts of an image, for
example the blue screen replacement often seen in video editing.

2.1. MULTI-MEDIA DATABASE SYSTEMS 19

Induced pixel operations are unary and binary operations on individual
image pixels. If the operation γ is a binary operation on F , then γ induces
a binary operation γ on FX defined as follows:

Let a, b ∈ FX , then

aγb = {(x, c(x)) : c(x) = a(x)γb(x), x ∈ X}

If the operation θ is a unary operation on F , then θ induces a unary opera-
tion, also called θ on FX defined as follows:

Let a ∈ FX , then

θ(a) = {(x, c(x)) : c(x) = θa(x), x ∈ X}

See table 2.1 for a list of unary and binary image operations.

Operation Description
−a image negation
¬a logical image negation
sin(a) sinus image
a+ b image addition
a− b image subtraction
a ∗ b image multiplication
a/b image division
a ∨ b image minimum
a ∧ b image maximum
a < b image smaller than
a >= b image larger equal than

Table 2.1: Example Induce Pixel Operations

When for one of the operands of the binary operation a constant value
is used we get a scalar operation. If the operation γ is a binary operation
on F , then γ induces a binary scalar operation γ on FX defined as follows:

Let k ∈ F and a ∈ FX , then

aγk = {(x, c(x)) : c(x) = a(x)γk, x ∈ X}

kγa = {(x, c(x)) : c(x) = kγa(x), x ∈ X}

The global reduction operations reduces an image into a single complex
value. Let operation γ be a binary operation on F , then γ induces a unary
operation

Γ : FX → F

called the global reduce operation, which is defined as

Γa = Γx∈Xa(x) = Γnk=1a(xk) = a(x1)γa(x2)γ . . . γa(xn).

20 CHAPTER 2. IMAGE DATABASES

Simple examples of reduce functions are addition, multiplication, minimum
and maximum of pixels.

Spatial operations transform images based on the point set, which rep-
resents the topology of the image. Examples of spatial transforms are image
translation, rotation and reflection. Also the family of affine transforms are
spatial operations. Let f : Y → X and a ∈ FX , then we define the induced
image a ◦ f ∈ F Y by:

a ◦ f = {(y, a(f(y))) : y ∈ Y }

Template image operations transform images based on templates. A
template is an image whose pixel values are images (functions). Formally
defined as follows:

Definition. A template t is an F -valued template from Y
to X is a function t: Y → FX. Thus, t ∈ (FX)Y and t is an
FX-valued image on Y.

For notational convenience we define ty ≡ t(y) ∀ y ∈ Y. The pixel values
ty(x) of this image are called the weights of the template at point y.

We can divide templates into two categories, the translation variant and
invariant templates. A template is called translation invariant when for each
triple x,y,z ∈ X we have ty(x) = ty+z(x + z). Many of the translation in-
variant templates can be defined pictorially. See Figure 2.1.2 for an example
pictorial definition of a template.

−1

−1

−1

−1

y−1

y

y+1

 y−1 y y+1

4

Figure 2.1: Example Template

A template image operation performs an induced pixel operation for each
image, ty, in the template. Each resulting image is reduced using a global
image reduce operation. The resulting value will be the pixel value at the

2.1. MULTI-MEDIA DATABASE SYSTEMS 21

pixel position y in the resulting image. Formally, let template t ∈ (GX)Y ,
image a ∈ EX , and a© ty ∈ FX and Γ(a© ty) ∈ F . It follows that the
binary operations © and γ induce a binary operation

©γ : EX ∗ (GX)Y → F Y ,

where
b = a©γ t ∈ F Y

is defined by
b(y) = Γ(a© ty) = Γx∈X(a(x)© ty(x))

= (a(x1)© ty(x1))γ(a(x2)© ty(x2))γ . . . γ(a(xn)© ty(xn)).

This is the right product of image a with template t also the left product of
a with template t exists.

Example template operations are image convolution and the basic mor-
phological operations, dilation and erosion. In case of the convolution, the
original image is multiplied with each template image. Each resulting image
is summed to a single value.

A histogram for an image a(x) can be calculated uses template opera-
tions. A template, t→ (NY)X , used together with a function,

t(a)x(j) =

{
1 if a(x) = j
0 otherwise

transform an image into a set of images. Using an image reduce operation
which sums each image the histogram is calculated.

Templates are just a special kind of image. This assures all image oper-
ations are also defined on templates. We can restrict and extend templates.
The induced operations on templates map each operation on each pixel, i.e.
an image. So template addition maps to image addition for each image in
the template and the image addition will map to pixel addition for each
value in these images. These template operations make the image algebra
such a powerful framework.

Requirements Summary

The requirements involving image primitives are summarized as follows.

1. Requires support for a polymorphic image type.

2. Requires support for the complete set of image operations as specified
by the image algebra on this image type.

22 CHAPTER 2. IMAGE DATABASES

2.1.3 Features

Another basic requirement for image databases is storing and managing de-
rived data. In the image processing domain derived data types are called
features. These features are used to describe, interpret or understand the
image data. The features derived from the complete image are usually called
global features as opposed to the local features calculated at a region, seg-
ment or single point within the image.

Over the years, a large collection of image features has been proposed,
which can be grouped into a few categories: color, texture, frequency anal-
ysis, and shape features. Some examples in each category are given below.

Color Features Average color, dominant color, color histogram, color dis-
tribution and color variance.

Texture Features Dominate angle, object granularity.

Frequency Features wavelet and discrete Fourier transforms

Shape Features Circularity, eccentricity, bounding energy, boundary, mo-
ment features.

Example single pixel value features include intensity, color and reflec-
tivity. Over a region or segment a histogram of the pixel values can be
calculated, this is called a complex feature. From this histogram many fea-
tures can be derived, like dispersion, mean, variance, mean square value and
average energy. A second order histogram, a histogram of all pairs of pixel
values, is also used often[28].

Texture is observed in the structural patterns of surfaces of objects such
as wood, grain, sand, grass and cloth. Textures are usually described us-
ing a repetition of basic texture elements. Natural textures have usually
random repetitions and changing texture elements. Artificial textures are
often deterministic and periodicy. Often the textures are described using
measures for the coarseness of the basic textures, periodic and orientation.
Many other texture features exists. Examples can be found in [49, 60] and
[61].

Examples of frequency features are based on the discrete Fourier and
wavelet transforms. The Discrete Fourier Transform (DFT) results in a
decomposition of the image in the frequencies of cosine functions. The fre-
quencies tell us something about the content of the image. A high number of
high frequency cosine functions indicates many small changes in the image.
Low frequencies would indicate a rather smooth image.

The wavelet transform [31, 104, 114] analyses an image at multiple scales.
It recursively decomposes an image using a low and a high band filters. This
gives a similar description of the image as a Fourier transform, but with
an additional component of locality. The Fourier transform only globally

2.1. MULTI-MEDIA DATABASE SYSTEMS 23

decomposes a signal in its frequencies, i.e. no locality is preserved. The
wavelet transform uses small filters with a limited size so it preserves locality.

Shape features can be divided into two categories, geometrical and mo-
ment features. Examples of geometrical features are perimeter, area, max-
min radii and eccentricity, corners, roundness, bending energy, holes, Euler
number and symmetry. Moment features are e.g. center of mass, orienta-
tion, bounding rectangle, best-fit ellipse and eccentricity. Object boundary
and skeleton are also interesting features. Shape can also be described using
Fourier and wavelet coefficients.

Another important category are the spatial relations within the image.
However, they are not often used in prototype image retrieval systems. Ex-
ample spatial relations are overlap, touch and disjoint.

This list of features is by no means complete, but it gives a good indica-
tion of the various features studied in the field. New features are likely to
be found to solve specific problems. This requires that the database man-
agement system needs an extension mechanism for both data structures and
operations on (complex) features.

Although many features exist, a limited number of data structures would
suffice to store them. Many features are single values, i.e. no need for extra
data structures. Some examples are area, pixel sum, and mean orientation.
These can be stored using the database management systems built-in types,
such as integer and floating point number.

Multi value features, like histograms of pixel values, vectors of eigenval-
ues, moment description vectors and segment descriptions, such as polygons,
need additional data structures. However, a vector of complex data values
would suffice to represent many of them. For polygons and histograms
special data structures are needed. In the area of geographic information
systems proper representations and index structures for geographic data like
polygons exist[13].

The local features are calculated over parts of an image. For instance
a single pixel or a segment can be the basis for this calculation. Since an
image may have several pixels or segments, these features usually result in
feature value sets for the whole image. This complicates calculation but the
additional information may also produce better retrieval results[100].

Invariant features

One aspect of features has received great interest from the image processing
community, namely their in variances to certain aspects, such as scale, ro-
tation, view point and light source. To illustrate, assume we are searching
for a certain scene in our image database. We do not care if the scene is
recorded under a white or under a colored light source. In that case we
should use features invariant under light sources. This means we have to
look at the hue color component only or extract the color shift. But when

24 CHAPTER 2. IMAGE DATABASES

interested in sunsets or images taken at indoor dance parties, we definitely
want variant features. In case of the sunsets we would like natural light
sources, in the later case we look for artificial light sources. A similar story
holds for the other variances, for example scale invariance could be useful
unless your searching for objects you know the size of.

The negative aspect of invariance in feature space is that it reduces the
feature selectivity. Invariance to some aspects makes a feature less specific
and, therefore, less selective. Therefore, from a retrieval point of view invari-
ant features are certainly not more important then variant features. Using
the appropriate one at the correct time is far more crucial. This means that
invariance is a predicate to be expressed at the query time only.

Retrieval requires that the permissible variances can be modeled explic-
itly. Modeling (in)variances requires the knowledge about the aspects that
a feature is variant to. So if a feature is variant to a light source we should
record that.

Requirements Summary

The requirements involving image features are summarized here.

1. The IDBMS should support for feature data types

2. The IDBMS should have support for modeling feature (in)variances.

3. Invariance can be expressed in the Query Language.

2.1.4 Image Semantics

Image recognition is research concerned with object recognition, i.e. tries to
recognize the objects in an image and attache a description to these objects.
Unfortunately, the image recognition problem has not been (and cannot be)
solved in general.

However, in certain sub-domains interesting results have been obtained.
One striking example is face recognition[86]. When it is possible to recog-
nize the objects, we can construct a semantic description. Such semantic
descriptions should be stored in an image database as well, which introduce
new interesting problems. We will mention two: the multiple interpretation
problem and the accumulated error problem.

The former stems from the fact that an image has many interpretations.
Everybody can have its own interpretation of an image depending on the
knowledge and cultural setting of the person. This results in many possibly
large semantical descriptions. The consequence is that at query time, such
an image database should be able to reason with multiple interpretations.

The second problem, the accumulated errors, results from the fact that
images are always derived from inaccurate devices. When recoding an image

2.1. MULTI-MEDIA DATABASE SYSTEMS 25

using some sensor error signals are added to the original scene. Also because
of the digitization errors are introduced. Building semantic descriptions for
these images will yield an accumulated error. The database management
system should therefore be able to handle errors and error propagation.

Requirements Summary

The image recognition problem is still an open research area. Therefore,
the problems related to representing the semantic information will not be
considered in this thesis. In the future when semantics are attached to
images these problems will come back and will than result in requirements for
the image database system. Mostly at level of data modeling and semantic
driven querying.

2.1.5 Image Queries

In database systems all relational operations are based on logical predicates
being either true or false. This rigid logic perspective works, because the
semantics of the data entities in business database systems are known and
fixed.

For image database systems this is no longer sufficient. The world of
images is a lot more fuzzy. Images can be very similar, but are hardly ever
exactly the same. This makes it hard to write boolean predicates, such as
image equality. A fuzzy set approach is in order here as an alternative.

Image queries are often navigational and steered by a user. Take for
example image retrieval systems, which let a user navigate through the image
space. In such systems the user constantly refines his query to navigate to
the desired image. The reason for this navigational query approach are two
fold. First, the mentioned fuzzy data makes predicates hard to use. The
second reason is there is still little knowledge of the applications that uses
an image database. This makes it hard to predict what sort of queries are
needed, because it is unknown what the interesting data is.

Since the predicate logic expressions are hard to use, they should be
replaced by a new technique for comparison. A solution found in many
image retrieval systems is based on similarity measures.

Definition. A Similarity Measure, S(a, b) → R[0,1], ex-
presses how similar two objects are.

Many similarity measures have been defined. For vectors different simi-
larity measures exist as for value sets. One such fixed form similarity mea-
sure is based on the Minkowski metric.

S(a, b) =
∑n
i=0 ‖ai − bi‖∑n
i=0max(ai, bi)

(2.1)

26 CHAPTER 2. IMAGE DATABASES

This measure assumes the features in the vector are all unrelated, which is
usually not the case. For example is the color of an object preserved by a
human dependent on the colors in the area around the object.

The best known similarity measure is histogram intersection, which is
formally defined as:

S(a, b) =
∑n
i=0min(ai, bi)∑n

i=0 ai
(2.2)

This is a non symmetrical definition, i.e.. the similarity for a,b and b,a
are not equal. Therefore, the following symmetrical definition is also used
frequently.

S(a, b) =
∑n
i=0min(ai, bi)∑n
i=0max(ai, bi)

(2.3)

These measures are both used for color histogram similarity calculations.
The reason for its popularity is its robustness against cluttered images. and
its invariance to scale and rotation. Also the measure is less variant to
different view points. The measure also assumes the features in the vector
are unrelated, for color histograms this is clearly not the case.

Therefore, another well known measure, i.e. the weighted Euclidean
similarity measure is used. This measure comes from the family of squared
similarity measures, which is formally defined by:

S(a, b) = 1−

√√√√ n∑
i=0

(ai − bi)2 (2.4)

And the weighted Euclidean similarity measure is defined by:

S(a, b) = 1− aWbT (2.5)

Where W is an (n ∗ n) matrix which represents the weighting factor
for each i, j pair. Using this weighting factors the relations among feature
values in the vector can be modeled. This W should be derived from global
database properties.

Measuring the similarity between feature sets is a less touched research
direction. One known measure is the set intersection measure, as defined
by:

S(a, b) =
‖a ∩ b‖
‖a ∪ b‖

(2.6)

The problem of feature set comparison becomes even more difficult when
the values in the sets are fuzzy. In that case the set elements need to be
compared also using some similarity metric. Then the semantics of the ∩
and ∪ operators have to be changed too.

A database query will usually involve many different features, which
should be compared using different similarity measures. Queries over mul-
tiple similarity spaces could be handled in various ways. A simple solution

2.2. DBMS 27

could be to used traditional boolean predicates. For example selecting im-
age on color and texture requires the color feature similarity value should
excide a threshold tc and the texture feature similarity value should excide
a threshold tt.

A more advanced method could be a combination of the feature values
involved[58]. This method has the drawback that the search space explodes,
since it combines two feature spaces in one, which makes query optimization
difficult.

Another method is based on fuzzy logic operators. Fuzzy logic theory
maps the and and or logical operators to minimum and maximum oper-
ations. For example the query showing in Figure 2.1.5 which selects images
similar to an example image ex, will calculate the minimum of the color
and texture features and the maximum of this with the combined color and
texture features.

select
from images i

where i.color = ex.color
and i.texture = ex.texture

or i.color texture = ex.color texture

Figure 2.2: Example Query

The introduction of this new query model with similarity measures and
with fuzzy logic operators requires new index structures. Such structures are
more generally applicable when they are independent of the logic operator
or similarity measure used.

Requirements Summary

The main requirement coming from image queries is a new query model. The
current binary logic model is not suited for image queries. One suggested
query model is the fuzzy logic model. Currently, similarity measures are
used mainly.

2.2 DBMS

In this section we introduce our extensible main memory database manage-
ment system, which is the appropriate system for image based applications.

2.2.1 Extensible

Important requirements we found for an image database management system
are

28 CHAPTER 2. IMAGE DATABASES

1. There is a strong need for Image and feature data types, and their
operations.

2. There is a need for Index structures for efficient queries on images and
features.

Therefore, we need an extensible DBMS.
An extensible database management system can be extended with new

abstract data types, new commands and new index structures. This makes
it possible to add an image data type to the system. An image would be
treated the same way as ordinary types, like integers and strings. So the
basic algebraic functionality, like the set operations: union, intersection,
minus, and symmetrical difference and the relational operators: select, join
and anti-join, would work without extra coding.

In addition new image processing commands can be added to such a
system. Also new feature data types can be added. The new data structures
can be large and expensive to query, therefore new index structures may be
added to speed up the retrieval of these structures.

2.2.2 Main Memory

A design issue so far ignored is performance. Image applications are CPU
demanding and often time critical. Example applications, like surveillance,
authentication and error detection all demand high performance. But also
interactive access of an IDBMS calls for a performance wise approach to
avoid loosing interest of end users.

Therefore, a database management system for image applications needs
to deliver high performance. At the hardware level this can be achieved
with better CPUs, memory and, disks. Such a system is no longer io-bound
but CPU-bound, giving the system the appreciated performance. The ideal
system for this is a main memory DBMS.

To further improve the performance of a database system shared memory
multi-processor systems are needed. On these systems parallelism could be
exploited to improve the throughput.

2.2.3 Objects versus Sets

As image processing software moves more and more towards object oriented
program languages [68, 112, 105] it seems wise to choose an OODBMS for
image database applications. The same programming language can then be
used for both application and database specific code. The problem with this
seemingly ideal case is the mismatch between the imperative programming
paradigm and the declarative paradigm of the database. The advantage of
only declaring what is needed will be lost in such a situation, because the

2.3. ARCHITECTURE OF MONET 29

imperative programming paradigm of the object oriented requires you to
specify how to obtain it.

A possible solution is to use a proper object oriented query language,
like OQL, to interact with the database. Although such a combination
of an object oriented language, such as C++, and an object oriented query
language solves the mismatch, it requires proper programming practice from
the application programmers to make full use of the database functionality.
Its too easy to fall back to object at a time processing.

A better approach is to identify a minimal, but complete set of primitives
for image applications, including both image operations and image query
primitives. These combined with an extendable SQL like query language,
such as SQL-’99, would leave space for optimization and put no extra burden
on the programmers programming skill. It clearly separates database use
from application programming tasks.

2.3 Architecture of Monet

Monet is a novel database kernel under development at the CWI and UvA
since 1994. Its development is based on experience gained in building
PRISMA, a full-fledged parallel main-memory RDBMS running on a 100-
node multi-processor, and on market trends in database server technology.

Developments in personal workstation hardware are at a high and contin-
uing pace. Main memories of >>1 GB are now affordable and mass-market
CPUs currently can perform over 1000 MIPS. They rely more and more on
efficient use of registers and cache, to tackle the ever-increasing disparity1

between processor power and main memory bus speed. These hardware
trends pose new rules to computer software – and to database systems –
as to what algorithms are efficient.Another trend has been the evolution of
operating system functionality towards micro-kernels, i.e. those that make
part of the Operating System functionality accessible to customized appli-
cations. Prominent research prototypes are Mach, Chorus and Amoeba,
but also commercial systems like Silicon Graphics’ Irix and Sun’s Solaris
increasingly provide hooks for better memory and process management.

Given this background, we applied the following ideas in the design of
Monet:

• binary relation model. Monet vertically partitions all multi-attribute
relationships into Binary Association Tables (BATs), consisting of
[OID,attribute] pairs.

This Decomposed Storage Model (DSM) [27] facilitates table evolu-
tion, since the attributes of a relation are not stored in one fixed-width
relation. Figure 1 shows this model in detail.

1In recent years this disparity has been growing with 40% each year

30 CHAPTER 2. IMAGE DATABASES

5667880

5667879

5667881

5667879

5667880

5667881

5667879

5667880

5667881

180

123

230

Average Pixel ValueOidHistogramOidImageOid

230

123

180

Average Pixel ValueHistogramImageOid

5667879

5667880

5667881

Figure 2.3: Decomposed Storage Model

The price paid for the DSM is small: the slightly bigger storage re-
quirements are compensated by Monet’s flexible memory management
using heaps. The extra cost for re-assembling multi-attribute tuples
before they are returned to an application, is negligible in a main-
memory setting, and is clearly outweighed by saving on I/O for queries
that do not use all the relations attributes.

Finally, maintaining all attributes in different tables enables Monet to
cluster each attribute differently, and to precisely advice the operating
system on resource management issues, for each attribute according
to its access path characteristics.

• perform all operations in main memory. Monet makes aggressive use
of main memory by assuming that the database hot-set fits into main
memory. All its primitive database operations work on this assump-
tion, no hybrid algorithms are used. For large databases, Monet relies
on virtual memory by mapping large files into it. In this way, Monet

2.3. ARCHITECTURE OF MONET 31

avoids introducing code to ’improve’ or ’replace’ the operating system
facilities for memory/buffer management. Instead, it gives advice to
the lower level OS-primitives on the intended behavior2 and lets the
MMU do the job in hardware.

Unlike other recent systems that use virtual memory, Monet stores its
tables in the same form on disk as in memory (no pointer swizzling),
making the memory-mapping technique completely transparent to its
main-memory algorithms.

• extensible algebra. As has been shown in the Gral system [51], many-
sorted algebras have many advantages in database extensibility. Their
open nature allows for easy addition of new atomic types, functions on
(sets of) those types. Also, an SQL query calculus-to-algebra trans-
formation provides a systematic framework where query optimization
and parallelization of even user-extended primitives becomes manage-
able. Monet’s Interface Language (MIL) interpreted language with a
C-like syntax, where sets are manipulated using a BAT-algebra.

• coarse grained shared-memory parallelism. Parallelism is incorporated
using parallel blocks and parallel cursors (called ”iterators”) in the
MIL. Unlike mainstream parallel database servers, e.q. PRISMA [2]
and Volcano [50], Monet does not use tuple- or segment-pipelining.
Instead, the algebraic operators are the units for parallel execution,
which simplifies query optimization. Their result is completely mate-
rialized before being used in the next phase of the query plan. This
approach benefits throughput at a slight expense of response time and
memory resources.

2.3.1 Monet Architecture

The architecture of Monet is structured as a frontend/backend system. The
current implementation has frontends for the Monet interface language, the
object database management groups[17] object definition language (ODL)
and for the structured query language (SQL) (see Figure 2.3.1)

The Monet database system is designed to be a extensible in all direc-
tions. Meaning, new data types, commands and accelerators can be added.
The MIL has a sister language called the Monet Extension Language (MEL),
which should be used to specify extension modules. These modules can con-
tain specifications for new atomic types, new instance- or set-primitives and
new search accelerators. Implementations have to be supplied in C/C++
compliant object code.

2This functionality is achieved with the mmap(), madvise(),and mlock() Unix system
calls.

32 CHAPTER 2. IMAGE DATABASES

Monet Database Kernel

Extensible Interface

SQL
MODULE MODULE

IMAGEODMG
MODULE

MIL

Special Image
client

SQL client

MIL client

Figure 2.4: Monet Architecture

2.3.2 Monet Interface Language

The Monet Interface Language is a low level BAT-manipulation database
query language, extensively described in [9]. For self containment of this
thesis, we introduce some part of Monet’s instructions set and programming
concepts.

Table 2.2 lists the relational operations with there functionality. Monet
uses binary tables (BAT) all relational operations are defined on those. The
first column of a BAT is called its head column and the second its tail
column.

The select operation selects all binary units (BUNs) where the tail value
of the input BAT is between the lower and upper bounds given. The semi-
join operation selects all BUNs of the α BAT whose head value also occurs
in the β BAT. The join operation implements a natural equi-join based on
the tail of the α BAT and the head of the β BAT.

The difference operation (diff) selects all BUNs which occur in α but not
in β BAT. The union and intersect are the well known set operations. The
unique operation selects all unique BUNs from a BAT. All these functions
work over both the value in the head and tail. i.e. an intersection between
two BATs is the intersection between the pairs of head and tail values. They

2.3. ARCHITECTURE OF MONET 33

all have an equivalent version based only on the head value, these functions
have the same name prefixed with a k, i.e. kdiff, kunion and kintersect.

Relational Operation functionality
select(BAT α, T low, T high) {ab : ab ∈ α ∧ low ≤ b ≤ high}
semijoin(BAT α, BAT β) {ab : ab ∈ α ∧ cd ∈ β ∧ a = c}
join(BAT α, BAT β) {ad : ab ∈ α ∧ cd ∈ β ∧ b = c}
Set Operation functionality
diff(BAT α, BAT β) α/β
union(BAT α, BAT β) α ∪ β
intersect (BAT alpha, BAT β) α ∩ β
unique(BAT α) {ab : ∃ab ∈ α}

Table 2.2: Monet’s Relational and Set Operations

Table 2.3 lists the construction and update operations with there func-
tionality. Bats are created using the new(ht,tt,capacity) constructor,
where ht and tt represent the head and tail column type, respectively. The
capacity is an optional parameter to identify the initial table size. A proper
guess of the tables size reduces memory fragmentation.

Bats can be updated using the insert(BAT, h,t), replace(BAT, h,t),
and delete(BAT, h, t) primitives. Insert appends a single pair of atom
values to the end of the table. Replace updates all tail values for binary
records (BUN) with the given head value. Delete removes all matching
pairs. Monet assures BUN’s are in consecutive memory, i.e. no holes are
allowed between BUN’s. Therefore, the BAT scan operations can be kept
simple and fully optimized.

Performing a single operation on all tail values of a table can be done
using the [] multiplex operator. For example adding the tails of two tables
can be done using the statement [+](a,b), this will find pairs with equal heads
and add the tail values together. Aggregating groups can be done using the
{} operator. This operator performs an operation for each group in the given
BAT. Groups are identified by unique values in the head column of the given
table. For example to sum all groups we can use {sum}(a), where sum is a
BAT operation to add all tail values in the BAT. The sum operation gets
one parameter, a BAT. In the same way an average, min, and max operators
over groups can be defined. Such operator gets the group BAT so it can do
any initialization steps it self, i.e. for the sum start at zero, and also any
post processing, i.e. for the average dividing the sum by the group count.

MIL is a procedural language. It has well-known flow of control con-
structs such as, while and if/then/else statements. Also BAT related
iterators such as batloop, and hashloop(a), iterates over all BUN’s exe-
cuting a MIL block. New MIL procedures can be introduced using the proc

34 CHAPTER 2. IMAGE DATABASES

1 proc sum (BAT[any,int] b) : int := {
2 var res := 0;
3 b@batloop(){
4 res += $t;
5 }
6 return res;
7 }

Figure 2.5: Example mil procedure

keyword. See Figure 2.5 for a simple MIL procedure which sums a BAT.
The first line defines the procedure. Sum gets a BAT of integers as param-
eter, and returns a single integer. In line 2 the res variable is initialized.
Line 3 to 5 loop over the BAT and add the BUN’s tail value ($t) to the res
variable. Finally in line 6 the sum is returned to the caller.

Operation functionality
new(ht, tt, capacity) BAT[ht,tt]
insert(BAT α, T h, T t) α ∪ ht
delete(BAT α, T h, T t) {ab : ab ∈ α ∧ a 6= h ∧ b 6= t}
replace(BAT α, T h, T t) {at : (at ∈ α ∧ a 6= h) ∨ (ab ∈ α ∧ a = h)}
sum(BAT α) a0 + . . .+ an ∧ a0, . . . , an ∈ α
avg(BAT α) (a0 + . . .+ an)/n ∧ a0, . . . , an ∈ α
max(BAT α) max(a0, . . . , an) ∧ a0, . . . , an ∈ α
min(BAT α) min(a0, . . . , an) ∧ a0, . . . , an ∈ α

[op](BAT[h,t1] α, BAT[h,t2] β)
{at : ab ∈ α ∧ ac ∈ β ∧ t =
op(b, c))}

{op}(BAT[h,tt] α)
{ab : β = {c : ac ∈ α} ∧ b = op(β)
}

Table 2.3: Monet’s BAT Update Operations

2.3.3 Monet Extension Language

Monet is an extensible database system, and hence MIL is an extensi-
ble language. Experts in some application domain can extend the Monet
database system to store new kinds of data and define operations on them.

Extending Monet is achieved by writing an extension module in the
Monet Extension Language (MEL). The MEL is a specification-only lan-
guage, see Figures 2.6, 2.7, 2.8 and 2.9 for an example MEL specifications.

A MEL module describes the types (atoms), index structures (accelera-

2.3. ARCHITECTURE OF MONET 35

tors), and commands to include in the Monet kernel. The module definition
also contains help texts on the new primitives, which will be inserted in
Monet’s online help system. Finally, the module contains references to C
functions that implement the primitives.

Mel modules can contain any of the following Monet extensions:

new atomic data types Mil has builtin support for { boolean, character,
integer, oid, pointer, float, double, long, and string } val-
ues. You can add new types, like date or vector readily (see Figure
2.6).

new algebraic commands or operators Algebraic commands get passed
a set of values as parameters, then do some execution, and return one
value. Mil allows for overloading of algebraic commands and opera-
tors. The extension programmer should specify a type-signature and
MIL chooses dynamically which command to use on the basis of the
actual parameters (see Figure 2.8).

new search accelerators Some operations on tables need additional –
persistent – data structures for efficient execution. Famous examples
are R-trees and hash-tables. The accelerator builder should provide
the interface operations to create, destroy, and traverse such tables.
The database needs to keep these tables consistent under updates; for
this reason additional update interface operations, insert and delete,
are required from the extension programmer (see Figure 2.9).

MEL Modules

Modules are the unit of extension in Monet: a module is loaded, or not.
When it is loaded, all its new language elements are added to the Monet’s
interpreter language. When a module is dropped, they are removed.

The .prelude and .epilogue constructs allow for C routines to be called
when a module is loaded and dropped physically. An example for its use
is the initialization of (empty) c structures, or for instance the creation
(/destruction) of shared locks. The C routines are parameterless and do not
return any value.

The .load and .drop keywords allow for the specification of MIL code
that is to be executed when a module is loaded. These features come es-
pecially handy for defining standard MIL procedures (procs) and constants.
As opposed to the prelude/epilogue initializations, the load/drop scripts are
executed at logical load and drop points: each time a user loads or drops a
modules (they are executed in the context of that user). The prelude and
epilogue are only execute once at physical module load and unload.

36 CHAPTER 2. IMAGE DATABASES

.module vectors;
.atom vector2D[8,4];

.tostr = vector2D_tostr;

.fromstr = vector2D_fromstr;

.COMP = vector2D_comp;

.HASH = vector2D_hash;

.null = vector2D_null;
.end;

.atom vector3D[3,1];
.tostr = vector3D_tostr;
.fromstr = vector3D_fromstr;
.COMP = vector3D_comp;
.HASH = vector3D_hash;
.null = vector3D_null;

.end;
.end vectors;

Figure 2.6: Example of the mel ATOM definition

atomic types

An important design issue of Monet’s atomic types is that there are basically
two classes:

fixed-size atoms Their memory management is simple, because all pos-
sible instances have the same size. They are stored directly in the
BUN heap (tuple heap) of a BAT. These types are very efficiently
implemented in Monet.

variable-size atoms From the builtin-types, string is the only variable
sized type. Values are stored in a separate heap, the BUN heap con-
tains integer byte-offsets into this heap. Monet ensures in this way that
the BUN heap can be implemented as an array of fixed-size elements,
even if it contains values of variable-size.

The correct functioning of all Monet’s standard operations (like join and
select) is guaranteed by suppling the atom interface for any new ADT, see
Figure 2.4 and 2.5.

For instance, a hash-function on a string is required to make Monet’s
hash-join work on columns of strings. The heap provides a context for
domain dependent optimization. For example, the implementation of the
string atom uses a hash-based catalogue in this heap. The catalogue is used
to have only a single copy of a string in the heap. MIL will recognize each
new atom as a keyword.

2.3. ARCHITECTURE OF MONET 37

Function description
FromString constructs the atom from a string
ToString converts the atom to a string
hash calculates a hash number for the atom
nequal tests it two atoms are not equal
comp compares two atoms, returns smaller, equal or larger
null get the nil value for this atom type

Table 2.4: Fixed Atom Interface

Function description
heap creates and initializes the heap
put insert an atom in the heap
get get a copy of an atom from the heap
del delete an atom from the heap
len get the size of the atom

Table 2.5: Additional functions for Variable Sized Atom Interface

Redefined Atoms A feature borrowed from Object Orientation is atom
overloading. One atom can be implemented using the existing interface
functions implemented by a parent atom. For instance an rgb atom is
implemented as a different interpretation of a vector3D atom, See Figure
2.7. The new type is different from its implementation type on the logical
level in MIL, but at the physical level it uses the implementations of its
parent type (or actually its root ancestor).

.module rgb;
.atom rgb = vector3D;
.end;

.operator (rgb) "+" (rgb) : rgb = rgb_add; "rgb addition"

.operator (rgb) "-" (rgb) : rgb = rgb_min; "rgb substraction"

.operator (rgb) "*" (rgb) : rgb = rgb_mul; "rgb multiplication"
.end rgb;

Figure 2.7: example of the overloading of Monet ATOMs

2.3.4 new primitives

Apart from atomic types, the MEL extension mechanism also allows for
introduction of new execution primitives into MIL.

38 CHAPTER 2. IMAGE DATABASES

Commands and operators are much alike. The exact way in which a
command implementation in C will get passed its parameters and what it
is expected to return will not be discussed here.

The functional part of the MIL language is a set of algebraic commands
and binary and unary operators. Commands get passed a set of values as
parameters, then do some execution, and return a (single) value. A collection
of such commands and operators, where foreach f(D) ⊂ D holds, is called
an algebra. 3

Figure 2.8 shows an example image module containing some new mil
commands and operator.

.module image;
.atom image = BAT;

.tostr = imagetostr;

.fromstr = imagefromstr;
.end;

.command width(image) : int = imagewidth;
"Get the width of this image"

.command height(image) : int = imageheight;
"Get the height of this image"

.operator (image) "=" (image) : bit = imageeq;
"Test if the images are equal"

.operator (image) "!=" (image): bit = imagene; ""
"Test if the images are not equal"

.command readFile(str filename) : image = readFile;
"read an image from the file, the extension
expresses the format in which the image is stored"

.command writeFile(str filename) : image = writeFile;
"write an image to the file, the extension expresses
the format in which the image should be stored"

.end image;

Figure 2.8: The image module

3It is actually not correct to call this a true algebra, since BAT-parameters are call-by
reference (as opposed to the simple values which are call-by-value), and can hence be
modified. This is just a pragmatical choice.

2.4. STATE OF THE ART OF IMAGE DATABASE SYSTEMS 39

MEL also allows for overloading of the multiplex, [], and group aggregate
operations, {}. At run time when MIL resolves the formal call [+] to a
physical function it will take the special optimized case for this operator.
The default implementation of the [+] operator uses a batloop and calls a
+ function for each BUN.

2.3.5 New Search Accelerators

A search accelerator is defined as ’a data structure associated with a data-
base column kept up to date with changes’. The prime reason for main-
taining such data structures is to achieve better speed on common database
operations.

Well-known search accelerators for traditional data types are the B-tree
and hash-tables. Examples from the GIS application domain are Grid-files
and R-trees[52, 4, 83].

For this reason the Monet’s extension mechanism allows for addition
of new (persistent) search accelerators. A BAT can hold two user-defined
search accelerators: one for the head and one for the tail. Monet provides
two standard search accelerators oriented towards main-memory relational
processing: the index binary tree index and the hash chained bucket hash-
tables.

The metric accelerator which will be introduce in Chapter 8 is shown
in Figure 2.9. This example accelerator requires besides the construction
(BUILD) and destruction (DESTROY) only insert and delete instructions
to keep the accelerator inline with the underlying BAT. It includes the def-
initions of the vector module using the USE statement.

Monet will recognize each new accelerator as a MIL keyword.

2.4 State of the Art of Image Database Systems

In this section we give a short overview of image database management sys-
tems, image retrieval systems and Image indexing techniques described in
literature. Each image database management and image retrieval system
is first described individually. These sections conclude with a evaluation
based on the requirement list. This means we evaluate each IDBMS on ex-
tensibility with new data types, commands and index structures. For image
retrieval systems we evaluate based on the existance of image operations, the
available image file formats, and on the available global and local features.

2.4.1 Commercial Image Databases

Despite the awareness in the database research community that general data-
base technology would be a clear asset to multi-media application domains,
limited progress has been made so far. This partly stems from a lack of

40 CHAPTER 2. IMAGE DATABASES

.MODULE metric;
.USE vectors;

.ACCELERATOR metric_acc(Vector);
.BUILD = metric_acc_build;
.DESTROY = metric_acc_destroy;
.INSERT = metric_acc_insert;
.DELETE = metric_acc_delete;

.END;

.COMMAND metric_acc_select(BAT[oid,Vector], Vector,
flt max_dist) : BAT[oid,Vector] = m_select;

"A distance select (select all within max_dist)
using the metric_acc"

.END metric;

Figure 2.9: Example of a MEL accelerator extension module

application domain knowledge within the database community to isolate
the functionality needed, as well as the lack of experience in using database
technology in the image research community to focus the effort on query
formulation and evaluation instead of dedicated storage and index manage-
ment.

Moreover, it has only recently become manageable to enhance the data-
base kernels with application domain functionality. For example, research
prototype database systems, such as postgress[103], Jasmine [26] and Starburst[72]
showed the route towards low-level extensibility of a database kernel. This
route is only recently followed by Oracle, DB2 and INFORMIX. It is ex-
pected that these facilities will become available in all commercial systems
within a few years.

Oracle Data Cartridges[84]

The Oracle 8 universal server supports a form of abstract data type (ADT)
extensibility. Oracle calls extension modules ”data cartridges”. A data
cartridge defines new ”Object data types” (ODT) with their behavior. The
description specifies both the ODT attributes in terms of existing Oracle
data types, member functions and procedures on these data types.

The procedures can be written both in PL/SQL, Oracle’s extended struc-
tured query language, and in C using external shared libraries. The PL/SQL
is not well suited for object member function implementations, because this
high level interpreted language caries to much weight to achieve the required

2.4. STATE OF THE ART OF IMAGE DATABASE SYSTEMS 41

high performance. The shared libraries runs in a separate process, which
ensures Oracle’s server stability under bogus member function implementa-
tions. The downside of this separate process model is performance. A call
to a separate process is orders of magnitude less efficient than an in process
function call. Furthermore, the external libraries can only access the server
via Oracles call interface (OCI), which again reduces performance. So both
implementation paths are perfomance wise not very promising.

INFORMIX Data Blades[57]

The INFORMIX-Universal Server provides a very advanced extensibility in-
terface, called Data Blades. A Data Blade module may include the following
components; new data types, functions, access methods, tables and indexes,
and client code.

User defined data types are treated as built in types. The database
allows various new data type definitions, the opaque type definition offers
maximum flexibility. It allows any data represented in C structures to be
natively stored and processed by the server.

The function component is a collection of function definitions which oper-
ate on any data types, new or built in. These functions extend the processing
and aggregation functionality of the database.

The access method component enables Data Blade developers to write
special index structures . An index structure for the INFORMIX server is
defined by a set of methods, open a scan, get next record, insert, delete,
replace and close scan.

The interface component can be used to export functionality of a Data
Blade. So, for instance an image retrieval Data Blade can use a text retrieval
Data Blade for keyword search.

A Data Blade developer can store and index data needed for the Data
Blade in tables and index structures directly. The client code component
contains the code which exports a client user interface for the new data
types.

INFORMIX supports an extensibility mechanism which is powerful enough
to support an image data type and operations on it. There is no support
for polymorphic data types.

DB/2 Universal Database[56]

The DB/2 Universal Database from IBM also supports extensibility, called
extenders. These extenders can extent the DB/2 server with user defined
types and user defined functions. These user defined types can only be
stored in large objects. This way common relational operators on these
newly created types are lost. The defined functions can be used from the
DB/2 SQL interface.

42 CHAPTER 2. IMAGE DATABASES

The supported extensibility of DB/2 is limited. New data types are
treated different than built-in types and it is not possible to extend the
server with special index structures.

Jasmine OO Database server

Jasmine is a fully object oriented database management system. It supports
addition of new classes, inheritance and method overloading. The index is
hidden, i.e. no support for advanged index structures is available.

This database has been extended with multi-media classes. The main
feature is data independence. Images can be stored in the database, so the
physical location is no longer needed.

Image Database Comparison

The differences between the commercial systems and Monet’s extensibility
are summarized in table 2.6. A + indicates the extensibility is available (-
means not available). A ++ means available and has a superior performance.

Database ADT Commands accelerators
Oracle 8 + + -
Informix ++ ++ ++
DB/2 + + -
Jasmine ++ ++ -
Monet ++ ++ ++

Table 2.6: Image Database Comparison

As can be seen from this comparing table the Informix and Monet system
clearly support the extensibility needed. The Monet system was chosen
because of its superior performance which comes from its main memory
oriented implementation.

2.4.2 Commercial Image Retrieval Systems

Virage: Visual Information Retrieval Module

The Virage Visual Information Retrieval (VIR) Module extends commercial
database management systems, such as Oracle 8, INFORMIX Universal
Server, Sybase and Object Store from Object Design, with image storage
and management capabilities. In addition developers can use the VIR Image
Engine to interact with their own DBMS. The VIR Image Engine capabilities
include:

storage Reading and writing multiple image file formats.

2.4. STATE OF THE ART OF IMAGE DATABASE SYSTEMS 43

thumbnail Automatic thumbnail creation.

content Analysis and comparison of images based on their visual content.

The storage capability provides users shared access to images centrally
stored in a DBMS. The VIR Image Engine supports translations between
popular image file formats during storage and retrieval, the following im-
age file formats are supported: JPEG, BMP, SGI, PSD, Sintex CT, TIFF,
PICT, TGA, MAC, RLE, EPS, PNG and PCX. The list of file formats again
illustartes the lack of a standardized image data type.

The VIR Image Engine provides a simple interface for image thumbnail
creation. A reference to the original full size image is maintained. The
thumbnail creation is offered for performance reasons. The lack of a complete
set of image operations makes this special feature necesary.

The visual comparison capability allows users to search for images based
on their content. Virage uses four features, i.e. color, color composition,
structure and texture to describe an image. These quantitative measures
provide easy access based on a similarity metric.

The VIR Image Engine provides no query language enhancements, such
as fuzzy or probabilistic reasoning. All queries should be defined as boolean
predicates on the features extracted from the images. Querying for similar
features involves full scans of the feature tables, because no special index
structures is added.

Excalibur Visual Retrieval Ware

Excalibur has build retrieval software, which runs on Jasmine, INFORMIX
and Oracle. It uses of the image contents shape, color and texture to index
the database. Retrieval is supported by query by example or by sketch.

The Excalibur Visual Retrieval Ware is based on Excalibur’s Adaptive
Pattern Recognition Processing (APRP) technoligy. APRP acts as a self-
organizing system that automatically indexes binary patterns in the digital
information, creating a pattern-based memory that is self-optimized for the
native content of the data. The bases for this indexing are the shape, color
and texture features extracted from the images.

Oracle Visual Image Retrieval Data Cartridge

Oracle also has its own image cartridge, the Oracle8 Visual Image Retrieval
Cartridge. This cartridge supports image storage in various image formats.
No support for image operations and image query extensions is provided.

2.4.3 Research Image Retrieval Systems

Several image database retrieval projects are underway, see survey [91]. A
few snapshot descriptions are illustrative for the approaches taken.

44 CHAPTER 2. IMAGE DATABASES

Keyword based image retrieval is supported by the web search engines
Yahoo and Alta Vista. They support search for images based on categories
and keyword matching. Yahoo manually annotates the images. Alta Vista
uses an annotated stock photo archive. No support for image retrieval on
image content can be found here.

The QBIC project [41], which later became a commercial product, stud-
ies methods to query image databases based on the image content, it is
based on IBM’s DB/2 Image extenders. The content features include color
distribution, texture, and position and shape of edges. The color feature
is described by the average RGB and Munsell[74] color coordinates and by
a 64 bins color histogram. The texture is summarized by a triplet, i.e.
coarseness, contrast and directionality. Shape is described as a combination
of area, circularity, eccentricity, major axis orientation and a set of alge-
braic moments. The similarity measure used are limited too quadratic form
distance functions, like the Euclidean distance.

To improve efficiency, the search space is reduced using a lower bound
metric on the color histogram Euclidean distance. The average color turns
out to be a lower bound for this distance [93]. Therefore, using the average
color does not result in missing actual hits, though extra false hits will be
introduced.

The VisualSEEk image retrieval system, as described in [101], automat-
ically segments the image into objects with equal color-set content. A color
set represents the colors in a segment. The spatial information about these
objects is stored. Using both the spatial and color properties the user can
query this database. A large database of 12,000 images is used in their web
demo.

It has an interesting graphical interface, called SaFe where spatial rela-
tions between features can be modeled by sketch. The features used for this
search type are color and spatial relations between similar regions.

Recently two other research projects appeared with a system using spa-
tial relations, ExSight[120] and Blobworld[16]. Both systems start by auto-
matically segmenting the images in the database. The user can then specify
the queries by selecting segments from sample images and spatially arange
them to from a spatial image query. The system searches for all similar im-
ages based on these spatial arangements using the segments features. Query
results show why an image is returned by displaying the segments used and
optionally the features can also be visualized.

The Photobook [87] provides a large amount of image processing func-
tionality useful for content-based image retrieval. An example is the se-
mantics preserving image compression technique, which reduces images to
a small set of perceptually-significant coefficients. Using a training set of
images, the ”eigenimage” vectors are computed. These vectors are used to
compress the image content information. The similarity between two images
is computed using the distance in this compressed ”eigenimage” space. This

2.4. STATE OF THE ART OF IMAGE DATABASE SYSTEMS 45

has been successful in face recognition.
The approach taken by the PictoSeek [46] is to build histograms of the

hue, the dominant hue edges and hue corners. The hue color component is
chosen since it is invariant to surface specularities, like shadow and high-
lights. The similarity measure is color histogram intersection [106], which is
less variant to occlusion and less dependent on the view point. Histograms
are invariant under a number of transformations. A web demo is available
with various databases, the largest contains 10000 images.

To improve retrieval performance various experiments are done with sig-
natures. A signature indates the presense or absense of a color in the image.
Using binary operators such as and, or, and x-or quickly a set of images
with similar colors can be retrieved.

Image Retrieval System Comparison

The difference between the various (non-)commercial image retrieval systems
and Monet’s image retrieval system are given in tables, 2.7 and 2.8. Table 2.7
expresses how the image retrieval systems score on the availability of image
operations and image input/output routines to various standard image file
formats. Scoring is again done with ++ (very good), + (available) and -
(not available). The non commercial image retrieval systems have limited
documentation about their image ADT.

Retrieval Operations Input/Output
Virage + ++
Excalibur - +
Jasmine ++ +
Oracle - ++
Monet ++ +

Table 2.7: Image Retrieval Systems Comparison of the image ADT

The second table shows the level on which the retrieval takes place,
globaly or localy (segments or pixels).

As can be seen from this comparing these tables none of the commercial
retrieval systems include all required functionality. The VisualSEEk, Blob-
world and ExSight score in the same range as Monet. We will explain more
about the Monet’s image retrieval system in the chapters 4.2 and 4.

2.4.4 Image indexing techniques

Data structures for image feature indexing have received quite some research
attention. The baseline is to replace the search key of an ordinary index
structure by a feature vector and to include a proper comparison operator.

46 CHAPTER 2. IMAGE DATABASES

Retrieval global features local features
Virage ++ -
Excalibur ++ -
Jasmine - -
Oracle - -
QBIC ++ -
VisualSEEk ++ +
PhotoBook ++ -
PictoSeek + -
Blobworld + ++
ExSight ++ +
Monet ++ ++

Table 2.8: Image Retrieval Systems Comparison of feature levels

For example, quad-trees can be easily extended to encode multilevel color
histograms, by Lu et.al. [53]. This enables fast similarity searches based on
those color histograms.

Signature files, originally developed for textual information retrieval,
have been extended by Faloutsos [3]. The trick is to use the important
image features as signatures for the images. Fast retrieval can be achieved
using bit comparison on the signature files.

Chang et.al.[98] proposed a “2D-string representation” to encode the
objects and their spatial relationships. Similarity retrieval of images encoded
in 2D strings is mapped to substring matching.

Nabil et.al. [75] use a graph-based encoding of the objects and their
spatial relationships. Subsequently, retrieval is turned into a weighted graph-
matching problem.

The Fourier transform of a signal yields a frequency decomposition which
is rather unsuited to describe local transitions. The wavelet transform [31,
104, 114] is designed to describe signals at different scales. The wavelet
coefficients yield a multiresolution decomposition of a signal.

Jacobs et al[59] apply a fast Haar wavelet transform to each color band of
the images. The feature vector is composed of the N maximal coefficients of
the wavelet transform, only the sign and indices are use not the values. Also
the average pixel values of each color channel are used. Using this feature
vector they claim to be able to find an image based on an in accurate (low-
resolution) version of the image.

Wang et.al.[115, 116] uses the Daubechies 4-layer 2-D fast wavelet trans-
form. They use a hierachical query method. First based on the standard
deviation in the 8*8 low frequency bands of the wavelet transform is used
to fast reduce the result set. This set is furture reduced using the weighted

2.4. STATE OF THE ART OF IMAGE DATABASE SYSTEMS 47

distance between the 8*8 low frequency bands. The last step uses the 16*16
low frequency bands to find the best matching images.

In [99] a method for segmentation based on the quad-tree index structure
is introduced for texture based image queries. Each image is recusively split
in four parts util the distances in the texture-feature space between the parts
and its enclosing part exceeds a certain threshold. Image parts are merged
when their texture feature distance is less than this threshold. For each
resulting segment the texture is calculated. So each image is represented
by a set of segment, texture pairs. A user can query this by suppliing an
example texture. The texture features are based on the Quadrature Mirror
Filter wavelet representation.

In [120, 101, 16] methods based on segmented images are described in-
cluding the segmentation algorithm. The Blobworld segmentation is done
based on color features using the HSV color model and texture features.
Safe only uses color to segment and query the images. The segments in
Blobworld are described using its centroid and scatter matrix expressing the
variance, excentricity and orientation. The queries in Blobworld use fuzzy
operators to combine feature values. Use of the and operator in a query
will take the minimum of the two feature values incase of the or operator
the maximum is used.

2.4.5 Requirements

From the existing systems we can deduce a list of requirements. Aside from
the basic requirements, i.e. storing and retrieving of images and derived
features, these systems need to compare features using similarity measures,
many of which exist. Unfortunately none perform perfectly in all cases. So
we need to support a large set of these feature comparing measures. Because
we use an extensible system later found measures can be easily added to the
system.

Most current systems do not allow for partial image queries, i.e. give me
all images which contain the following parts. Only the SaFe, ExSight and
Blobworld systems, lets users specify a query using combinations of spatial
relations and color and texture features.

48 CHAPTER 2. IMAGE DATABASES

Chapter 3

Database Assisted Image
Processing

The activities in image and database research fields seem opposites of a
spectrum. Image processing usually involves object (image) at a time pro-
cessing and database systems use set at a time processing. However, taking
a closer look, they are more related then one might expect. In this chapter
we will demonstrate a database approach for image processing, which will
open new ways to optimize image processing algorithms against large image
collections.

3.1 Data Structures

Storage consideration has long been driving the design of image processing
packages. Packages, such as SCILIMAGE, Horus[112], IUE, Khoros, Matlab
and PhotoShop, store images in two dimensional arrays of pixel values. This
simplified data representation requires no storage for the spatial component
of a pixel; its location is implicit. The implicit spatial component is used
throughout the algorithms.

A usual further reduction is obtained by using limited pixel value types.
For example, 255 gray levels present in an image can be stored in a single
byte pixel value. Although the storage requirement drops, it also creates
an overflow problem. Performing a pixel value operation can result in an
overflow, i.e. the value does not fit in the byte representation.

The storage considerations for modern image processing packages are less
import. With memory prices dropping quickly, current workstations easily
hold 256M of memory, which is more than adequate for image processing
geared towards a limited set of fully exploded images (1-7MB a piece).

Although the two dimensional array approach has its advantages, it also
has some difficienties.

49

50 CHAPTER 3. DATABASE ASSISTED IMAGE PROCESSING

• Optimization decisions are visible to the user

• Can not handle arbitrary shaped images

• Low level application programmers interface (API) only, i.e. only pixel
level operations are used.

• Cannot handle other regular or ir-regular grids, for the spatial com-
ponent.

An important database concept is to have a generally defined type at
the logical level and to hide the storage optimizations at the physical level.
Such a general definition for the logical level is defined in the Image Algebra,
which defines an image as a mapping from a spatial domain X into a range
value domain F .

In the Monet DBMS we would map an image to a BAT[X,F]. For
such mapping we need atomic types to represent the pixel positions and
values. The atoms currently provided in the Monet image database system
are shown in Table 3.1 together with the MEL packages supporting these
types. These packages can be extended with operators needed for new image
operations.

Pixel Type Implementation Type
Mel Package representation
Single value types
monochrome bit
grayscale byte
real valued float
2D Vector types
location int
gradient float
3D Vector types
color rgb
color HSI

Table 3.1: Pixel Types

This logical image definition solves the earlier mentioned problems re-
lated to the two dimensional array approach. It supports arbitrary shaped
images, and can handle different spatial representations. The costs for this
flexibility is high, because we potentially loose the storage savings of the
implicit spatial component. Later in this Chapter we will come back to this
storage overhead.

3.2. PRIMITIVES 51

3.2 Primitives

The data models for images and database relations are closely related, but
can we also show that their primitives are closely related ? In this investiga-
tion we follow the operation classes as defined by the image algebra (Section
2.1.1).

Image restriction on its range values can be mapped directly on the well
known select operations in database systems. For example, a restriction to
all pixels with values above a constant k maps to a selection of all records
with attribute range value above k. Restrictions on its spatial domain map to
a range selection (when the spatial ranges are known). When the restricting
spatial set is know a natural-semi-join operation can be used. Let a,b be a
bat(X,F) and k ∈ F then formally the mapping is as follows:

a‖>k ⇐⇒ a.select(k, nil)

a|b ⇐⇒ a.semijoin(b)

The image extension primitive maps on a combination of the set union
and difference operations. An extension of a with b is formally mapped as
follows:

a|b ⇐⇒ a.union(b.kdiff(a))

The range(a) and domain(a) operations map to the project operation in
Monet, projecting the column of interest. They are mapped as follows:

range(a)⇐⇒ [′nil′ ∼ a]

domain(a)⇐⇒ [a ∼′ nil′]

Induced image operations in Horus[112] map onto combinations of nat-
ural joins and scan operations in Monet. A binary image operation can be
mapped using a natural join between the two spatial attributes and a scan
over the resulting table, performing the binary pixel operation on the range
value attribute. In Monet the induced image operation λ between two image
a and b can be concisely expressed as follows:

aλb⇐⇒ [λ](a, b)

Monet already has some global reduction operations, namely : min, max,
sum, count and histogram. They perform the obvious reduction operations
on BATs. Since Monet has no general BAT aggregation operation, each
global reduction operation requires an implementation effort. This can be
done both by mil procedures and C functions. A general interface for such
operations can be defined to reduce this effort. This interface specifies three
operations: the init, next and finalize operations. The init function initializes
the reduction operation, e.g. setting variables. The next operation is called

52 CHAPTER 3. DATABASE ASSISTED IMAGE PROCESSING

for each element in the BAT. The finalize operation is called wrap up the
result.

Spatial operations are somewhat more complex to map into MIL. The
problem with such mapping is that the spatial domain of the result should
be a priori known. Then it is similar to the induce image operations. First,
a scan is performed to transform the spatial domain of the result into the
spatial domain of the original image, calling f for each position. The func-
tion f should be defined for the two dimensional space. Finally, a join is
required to look up the range values. Some y ∈ domain(f) may require
values outside the domain of a, i.e. f(y) 6∈ X. These will not be present in
the induced image.

a ◦ f ⇐⇒ [f](domain(f)).join(a)

To check whether the template image operations maps onto database
operations, we first need a mapping of a template. A template is defined as
an image of images, which maps to a table of tables. A template operation
will map to a scan of the template pixels, which are again images. For each
template image, an induced image operation is performed. The resulting
image, which will after being reduced using an image reduce operation, form
the resulting pixel value.

t©λ a⇐⇒ [template op](t, [t ∼ const a])

where
Λ([©](ty, a)) = template op(ty, a)

The [t∼ const a] construction creates a temporary template from the
image a, so both operands of template op have the same table of tables for-
mat. The template op operation performs the real induced image operation
and reduction.

To make the mapping of template operations to the BAT algebra oper-
ations clear we will explain the mapping of a well known image processing
operation, convolution. The image convolution is a template operation
which requires an induced image multiplication between the image and each
template image. The resulting images are reduced using a summation im-
age reduction operation. Figure 3.2 shows the implementation of image
convolution in MIL.

As shown the image algebra operations map onto the binary relational
algebra operations. Since templates are just a special kind of images, their
operations also map into the algebra operations.

3.3 Benefits of BAT representation

The mapping solution proposed solves the identified problems with the two
dimensional array representation. The true benefits should still be made

3.3. BENEFITS OF BAT REPRESENTATION 53

proc image mul(BAT[any,any] im, BAT[any,any] ty):={
[*](im,ty);

}
proc image sum(BAT[any,any] im):={

var res := v.fetch(0);
vbatloop(1,v.count() - 1){

res := [+](res,$t);
}
return res;

}
proc image convolution(BAT[any,any] image,

BAT[any,BAT] template):={
var a := [image mul]([template ∼ image], template);
var r := [image sum](a);
return r;

}

Figure 3.1: Example Template Operation

clear. We already discussed the advantage that arbitrary image segments
are obtained without additional work. In addition, we have the following
advantages of using binary relational tables as data representation for im-
ages:

• Image Integration at the core of the DBMS.

• Simplification of Data Structures and Code Reuse.

• Query Optimization.

• Database Supported Parallelism .

• Performance and Storage Improvements.

3.3.1 Image Integration

We simulated the Horus image representation and operations with the core
of the Monet database system. An important immediate benefit is the avail-
ability of index structures which come with the binary tables. These index
structures can be used to improve the performance of some image operations
drastically. For example, searching the spatial and range domains can be
optimized using proper accelerators[8].

Segmentation algorithms cluster pixels to form segments. For example
[47] describes a segmentation algorithm based on k-means clustering in color

54 CHAPTER 3. DATABASE ASSISTED IMAGE PROCESSING

space. Having an index structure or automated lookup table on the pixel
values is beneficial.

3.3.2 Simplification of Data Structures

The binary table is Monet’s main data structure. The decision for a single
complex structure (storing relatively simple atomic types) has proven to
be crucial for its core development and its impressive performance. With
the mapping we proofed (again) that this is also a powerful data structure
to handle image data types. The single structure can be used as image,
but also as data structure to store derived data sets. This means users
(i.e. image researchers) only have to understand a single complex data type,
which significantly decreases the learning curve.

The reuse of the BAT data structure has another important advantage,
namely code reuse. All image algebra operations map on combinations of
existing relational operators. There is no additional implementation effort.
Introducing new image processing operations can easily be done by supplying
the pixel value operations required for it. In many cases a simple MIL
procedure suffices.

3.3.3 Query Optimization

The key to fast responds in a DBMS is the query optimizer. By mapping
images into tables we can benefit from these techniques, i.e. the query
optimizer has all information to choose an optimal query execution plan.
Some techniques are introduce shortly.

Translation invariant templates

A possible optimization is to use the properties of a translation invariant
template. When we know that a template is translation invariant, we can
select one image from the template, for example ty with y = (0, 0), and use it
to represent the template. All other template images tx can be regenerated
using this image and a translation of its pixel values from y to x.

To illustrate, instead of doing an induced image operation followed by a
reduction for each position of the template t, we translate the original image
a over x for each x ∈ X, where X is the position set of the template rep-
resentant image. For each resulting image perform a binary scalar induced
image operation, where the scalar is the pixel value at position x. The last
step is to reduce the set of images using the reduce operation as the operator
of an induced image operation. Using this scheme reduces the number of
lookups of the pixel values of the template images. The steps are displayed
graphically in Figure 3.3.3

3.3. BENEFITS OF BAT REPRESENTATION 55

* y+x +

Figure 3.2: Translation invariant convolution

Reuse of intermediate results

Having translation invariant templates and some values v in the image ty ex-
ists multiple times, we can further reduce the number of operations required.
For each value in ty we apply the induced image operation, i.e removing any
duplicates. The optimized set of operations is displayed graphically in Fig-
ure 3.3.3

* y+x +

Figure 3.3: convolution reusing intermediate results

For some translation invariant templates, the values of the image ty
are not used. They are set to the unit value, i.e. it only expresses the
selection of the image pixel values. For example in a uniform filter the
values are not used, only the positions are of interest. The image algebra
denotes these as neighborhood operators. These operators only require the
translation and reduction steps of the template image product. Example
neighborhood operations are uniform filter, median filter and dilation and
erosion.

Further optimizations, such as ”sliding windows”, for the uniform image
filter can be supported by specialized operations. These operators place a
window over the original image, calculate a single result pixel from using
the pixels in the window, slide the window, and calculate the next pixel
reusing the pixel calculations in the intersection of the two windows. There
should be a way to express when a image template operation should use
these operations, i.e. a translation invariant template where all template
value are equal can use the fast uniform image filter[61] implementation.

Figure 3.3.3 shows the implementation of an optimized translation in-
variant convolution. The translation invariant template is represented by a

56 CHAPTER 3. DATABASE ASSISTED IMAGE PROCESSING

single BAT[Y ,F]. First the unique values are discovered. Using these the im-
age multiplication is done. Each resulting image is translated over the given
vector. The resulting images are combined (added) using the sum images
operation. The resulting values are divided by the sum of the pixel values
in the translation invariant template.

proc image mul(BAT im, BAT ty):={
return [*](im,ty);

}
proc sum images(BAT im):={

var res := im.fetch(0);
var rest := im.slice(1,im.count());
rest@batloop(){

res := [+](res,$t);
}
return res;

}
proc image ti convolution(BAT[any,any] image,

BAT[any,any] template):={
var unique values := template.reverse().kunique();
unique values :=

unique values.join(unique values.reverse);
var mul ims :=

[image mul]([unique values const im],unique values);
var trans ims := [translate](mul ims, template.reverse());
var sum ims := sum images(trans ims);
return sum ims;

}

Figure 3.4: Translation Invariant Convolution

Filter Decomposition

Some translation invariant templates can be decomposed into a set of smaller
templates. Such decomposed templates reduce the number of operations
needed to calculate a image template product. For example a 3x3 template
is decomposed into a 1x3 and a 3x1 template the number of operations
required for the template image product reduces from 9 to 6 per pixel. So
from O(n2) to O(n).

A query optimizer is the right place to find out such decompositions and
use it to optimize the query plan.

3.3. BENEFITS OF BAT REPRESENTATION 57

3.3.4 Parallelism

Mapping the image algebra operations onto relational algebra operations
opens a road to parallel execution. For relational algebra operations many
parallel algorithms exist. For example a template image product can be per-
formed in parallel. The work needed for all the induced image operations
can be spread over the pool of processors. Even lower granularity parallelism
can be achieved using horizontal decomposition parallelism. A table is hor-
izontally decomposed into multiple smaller fragments. These fragments are
distributed over the processors and the work is done there. The resulting
fragments are on return gathered to form the result.

An other form of parallelism is single instruction multiple data (SIMD),
which can be found in nearly all modern CPU. Example instruction sets are
Intel’s MMX and SSE, AMD’s 3D Now, Motorola’s AltiVec, and Sun VIS.
All are geared at multi-media applications, but these operations can just as
easily be used by database systems. Having the image algebra mapped on
the relational algebra it will seamlessly use the SIMD optimized operations.
In this thesis, parallelism is not considered.

3.3.5 Performance and Storage Improvements

The mapping of images into Monet’s BATs can be implemented with a
storage overhead comparable to the two-dimensional array image definition
commonly used by the image processing software packages. In this section
we also indicate how to further optimize storage requirements.

To understand the solution, we first explain the BATs data structure.
Figure 3.3.5 shows a typical BAT structure used in Monet. Each binary
table consists of a Binary unit (BUN) heap, to store the head and tail of the
relation. Each column has a fixed or variable type and optionally multiple
search accelerators. Fixed sized atoms are stored directly in the BUN heap.
Variable sized atoms are stored in a separate heap. In the BUN heap the
position of the variable atom is stored. A BAT with a head type oid and a
tail type chr will require 8 bytes, because integers require 4 bytes alignment
on most systems.

Although this storage scheme proved flexible, deployment in the data
mining showed another way to reduce the storage requirements. Let us take
a look at Figure 1, which shows the decomposition of a relational table
into BATs. The head of the BATs contain enumerations of unique object
identifiers. This information can be represented by a single object identifier,
indicating the first value, and a counter. Leading to virtual object identifiers
(voids)[12]. Using the void type reduces the storage requirements drastically,
since only one column needs to be stored.

We can use the virtual object identifiers (voids) trick to solve the re-
dundant spatial information. Just using the void type as the head is not

58 CHAPTER 3. DATABASE ASSISTED IMAGE PROCESSING

�����

column_imp

atom
sized

Variable
TH

BAT

Acc

Figure 3.5: BAT data structure

sufficient, because the spatial information would be lost. Therefore, we in-
troduce a separate BAT to store dimensionality information, i.e. the image
width and height. Image operations using the spatial component should take
care of handling these images based on void BATs. They should lookup the
dimensions and generate the implicit spatial component before performing
the actual operation.

This way, we achieve a huge storage reduction for the spatial component
X of image. Can we also save storage for the F component? A 1024 by 1024
24 bit color image requires, after spatial reduction, still leaves 1024*1024*3
bytes, i.e. 3 MB, which is still huge when considering image databases with
over 1M images (i.e. 3 TB databases). Fortunately, the cardinality of the
different values in the images is usually much lower than the number of

3.4. EXPERIMENTS 59

pixels. This fact is also exploited by image compression schemes, such as
found in the JPEG image format. In our Monet implementation a reduction
may be possible using an indirection to find the pixel value. Instead of
storing all values f directly, a position in a lookup table is stored. 1

An important consequence of the lookup table is the possibility to defer
non-spatial operations on the pixel values to the lookup table, reducing the
number of operations dramatically. Example candidate image operations
are unary and binary-scalar induced operations.

3.4 Experiments

To demonstrate that this approach is also feasible from a performance point
of view, we performed some experiments with one of the most important
image operations, the image convolution. As a sanity check, we compare
our implementation against the implementations done in Horus.

Horus is a new image process library developed by the university of
Amsterdam. It is designed to be a general image processing library, intended
for image analyzing tasks, implemented in C++ making heavy use of code
templates. The main focus of the library is performance. Therefor, some
of the generality of the image algebra is given up in favor of processing
speed. The Horus library only looks at translation invariant templates,
called kernels. These are the ones used most frequently. Also the image
implementation of Horus is focused on square shaped images, it lacks implicit
image segment support.

To show whether our optimizations have the desired effects we compare
our default convolution of invariant templates with a convolution using the
indirected pixel value, i.e, using a lookup tables ”ColorMap” representation
which requires less multiplication operations.

We compared the execution times of image convolution operations for
various image sizes, from 16x16 to 512x512 and various templates. The
results for each template are shown in the figures 3.4, 3.4, 3.4 and 3.4.
These figures show the results for the Horus convolution and both Monet
convolutions with and without pixel value lookup table optimization.

Figure 3.4 shows that the mapping of images to BATs is only approx-
imately 20% more expensive. This is relative small since it is achieved by
the existing relational operators. The use of the lookup table directly pays
off it gives a performance gain off 20% over Horus.

Figure 3.4 shows that both Monet implementations have approximately
the same performance, which is 25% better than Horus. The reason is that
the Horus implementation can not make use of the fact that all values in the

1 A reduction from 3 bytes to 1 byte can be achieved when less than 256 different pixel
values exist. Many images coming from the world wide web have this property.

60 CHAPTER 3. DATABASE ASSISTED IMAGE PROCESSING

6

7 8 9y−1

y

y+1

 y−1 y y+1

1 2 3

4 5

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350 400 450 500 550

tim
e(

m
s)

image size

"Horus"
"Monet"

"ColorMap"

Figure 3.6: Execution times of convolution operation

1

111

1

y−1

y

y+1

 y−1 y y+1

1

11

1
0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500 550

tim
e(

m
s)

image size

"Horus"
"Monet"

"ColorMap"

Figure 3.7: Execution times of convolution operation

template are equal. A user could solve in Horus by calling the neighborhood
operation, but that shows the optimization to the user.

Figure 3.4 shows that the mapping pays of. The Horus cannot handle
arbitrary shaped images and templates and therefore the convolution imple-
mentation has to go through the whole 3x3 template values, even though 4
values are ’zero’.

The last figure shows the combination of the previous two optimizations,
i.e. reuse the intermediates and no calculations for the ’zero’ template values.
This gives already about 50% performance increase.

3.5 Requirements

The requirements coming from using binary tables as the data structure for
images are:

• DBMS should be extensible with new abstract data types, for pixel

3.6. CONCLUSIONS 61

5

432

1

y−1

y

y+1

 y−1 y y+1

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500 550
tim

e(
m

s)
image size

"Horus"
"Monet"

"ColorMap"

Figure 3.8: Execution times of convolution operation

1

111

1

y−1

y

y+1

 y−1 y y+1

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500 550

tim
e(

m
s)

image size

"Horus"
"Monet"

"ColorMap"

Figure 3.9: Execution times of convolution operation

position and pixel values.

• The DBMS requires a void data type with virtual identifiers.

• The DBMS requires BATs which store values using a lookup table.

• The DBMS should allow for operator overloading.

In our research we found a huge gape between the research communities
of image processing and database management systems. A long history of
different single object versus set at a time processing has widened the gap.
With this chapter we hope to reduce this gap a little, since we know both
worlds can benefit substantially from each other.

3.6 Conclusions

In this chapter we showed our mapping of images to BATs, i.e. binary tables.
We indicated how a default implementation of the image algebra operations

62 CHAPTER 3. DATABASE ASSISTED IMAGE PROCESSING

can be achieved. This also proves the completeness of our approach. Using
this representation we indicated many roads towards optimization. We in-
dicated how these optimizations are obtained by the query optimizer to find
better query plans.

We showed that sets of images can be compressed with an additional
BAT interface. The interface allows for transparent access to BATs with
compressed data.

Chapter 4

The Image Retrieval Algebra

4.1 Introduction

With the advent of large image databases becoming readily available for
inspection and browsing, it becomes mandatory to improve image database
query support beyond the classical textual annotation and domain specific
solutions[117]. An ideal image DBMS provides a data model to describe the
image domain features, a general technique to segment images into meaning-
ful units, and provides a query language to study domain specific algorithms
with respect to their precision and recall capabilities. However, it is still
largely unknown how to construct such a generic image database system.

The early image retrieval systems, such as QBIC[41] and VisualSEEk[102],
have demonstrated some success in supporting domain-independent queries
using global image properties, such as dominant angle and color histograms.
The prototypical query posed to the system is (Q1) ”find me images simi-
lar to this on”. The user should supply such image or a sketch, leading to
techniques called query by visual example (QBE). The system searches for
all ”similar” images based on pre-calculated features and builtin similarity
measures.

This query evaluation technique is bound to fail in the long run for several
reasons. First, it assumes that the user has a correct sample of the envisioned
sample set. It presupposes that the envisioned target image is stored in the
database, and that progressing from a random sample set will lead to it
quickly. This assumption does not hold when the databases becomes large,
such as envisioned for the Acoi image database1. Using (Random) sample
sets to steer the query process becomes confusing, because they likely lack
an evident color, texture and shape relationship with the semantic domain
of interest.

1Acoi is the experimental base for the national project on multi-media index-
ing and search (AMIS). More information about Acoi can be on the web site:
http://www.cwi.nl/ãcoi

63

64 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

Image databases are rarely used to answer query Q1. Instead, the user
formulates a query (Q2) :“find me an image that contains (part of) the one
selected” where the containment relationship is expressed as a user con-
trolled metric over selected features or directly (Q3) :“ find me an image
that contains specific features using my own metric”.

Secondly, global image properties alone are not sufficient to prune false
hits, spatial information about object locality is also needed. For example,
in a large image database one could be interested to locate all images that
contain part of the Coca-cola logo. This query could be formulated by
clipping part of a sample Coca-cola logo to derive its reddish (R) and white
(W) color and to formulate a (SQL-like) query of the form:

select display(img)
from image segment s1,s2, image img

where distance(s1.avghue, R) < 0.2
and distance(s2.avghue, W) < 0.2
and s1.area overlaps s2.area
and s1 in img

sort by distance(s1.avghue, R),
distance(s2.avghue, W)

This query uses two primitive parameterized metric functions. The func-
tion distance calculates a distance in the hue color space and overlaps de-
termines segment containment. The former is defined as part of the color
data type and the latter for the segment data type. In principle, the DBMS
should support overloading and refinement of this function by the user.

The big challenge for image database designers is to identify the minimal
set of features, topological operators, and indexing structures to accommo-
date such image retrieval queries. In particular, those (indexed) features
where their derivation from the source image is time consuming, but still
can be pre-calculated and kept at reasonable storage cost. Features may be
viewpoint, scale, rotation, and translation invariant, but need not be, see
Section 2.1.3. These problems becomes even more acute when the envisioned
database is to contain over a million images. Observe also that SQL is a
declarative language, which should be translated into an execution algebra.
This lead to the requirement of a supportive Image Algebra satisfying the
following global requirements.

Navigational queries Image retrieval applications have a strong navi-
gational behavior. A user guides the search for a collection of interest by
repeatedly rephrasing the query posed to the system. Usually it starts with
a randomly selected image set taken from the database. The first real query
posed by a user is to select all images similar to an element of this sample
set. By selecting a new image from the result obtained, the user presumably
navigates to the collection of interest.

4.2. IMAGE RETRIEVAL BY CONTENT 65

Extensional relational framework Many researchers are looking for
new similarity measures to compare and rank images. Therefore, it should be
easy to extend the algebra with new data types, operators, and algorithms.
This way code-reuse can be guaranteed.

Proximity queries Features are derived from the image data. Since the
image data is inherently imprecise, so will the feature data. Therefore,
queries based on feature spaces should be supported by proximity queries,
probabilistic reasoning, and a toolkit of similarity measures. This way the
user has precise control over the query model which is needed to advance
research.

Computationally Complete The algebra should be computationally
complete. We want image analysis researchers to start using database tech-
niques. Therefore, we should at least support the operations necessary.
Besides that it should be extensible using third generation languages and
allow rapid prototyping using scripting languages.

4.2 Image Retrieval by Content

The early attempts for image retrieval systems used primarily keyword
annotations[18, 19, 20]. Image retrieval is simplified by formulation in terms
of keywords. The annotation is mainly manual, although some automatic
approaches exist. Examples like [119, 102, 43] use words found in the sur-
rounding of the image.

Experience with keyword based retrieval systems has been accumulated
in the area of information retrieval for several decades[113]. The wide spread
use of WEB search engines illustrate their limited effectiveness. Although
successful in bibliographical information retrieval, keyword annotation for
image retrieval suffers from major problems. The first problem is its lack
of scalability. Manually annotation of 1000 images may still be reasonable,
but databases with of over 100,000 images to annotate, becomes practically
impossible. At best a rough classification is done. Secondly, each person
will describe an image by a different set of keywords. This is a result of the
person’s perception of the information found on the image. Therefore, using
only keywords to describe images for retrieval purposes becomes impossible
for image databases in mind.

There are two solutions to the problem. The first is to broaden the
group of annotaters, which leads to social indexing.The second is to improve
manipulation of content, which will be our focus. This solution is simple,
just stick to the information found in the image, i.e. use the image content.
Although this sounds trivial, its realization is not. Deciding what content

66 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

to use and how to compare these image contents is still an open research
issue.

Retrieval methods based on color features, such as color histograms, are a
promising track [46, 41, 106]. Color is a powerful retrieval feature. However,
these retrieval algorithms largely ignore spatial information in the matching
process. At best a query can be specified in terms of color percentages or the
user has to outline objects as part of entering the image into the database.
Then color histograms for the (sub-) objects can be used in the retrieval
process. Although the index structures will be large for these methods,
both cases lead to a high percentage of false hits.

To understand the requirements of image retrieval systems we imple-
mented a prototype system. The system is designed to answer best match
for complete image queries, based on color and spatial information. Our
query interface is based on the query-by-example paradigm, and the system
returns a list of best matches in order of significance.

We also use spatial features, since it adds significant information to the
content description. It simply makes a lot of difference were a color appears
in an image. For example having blue on top often indicate air.

4.2.1 Multi-Level Signature

Query by features calls for a both color and spatial features. In this sec-
tion we describe an index scheme, which combines both color and spatial
features. The indexing scheme proposed, called the MLS (Multi-Level Sig-
nature), is based on a recursive splitting of the image. For each sub-image
we calculate the color feature. The color feature used is the average color
in the sub-image. Concatenation of the color features leads to a signature
that characterizes an image at various levels of detail.

Using spatial information directs us at considering space dividing meth-
ods, such as multi-level grids. In this study we focus on two methods to
the MLS, called quad-tree and prime-factor split. The quad-tree split is
based on the traditional quad-tree index structure[92]. The algorithm for
the quad-tree splitting process is shown in pseudo code in figure 4.1.

This algorithm first calculates the color feature, i.e. the average color, for
the image and stores this in the MLS. If we haven’t met the stop criteria,
the image is recursively divided into four equal adjacent parts. For each
part this process is repeated (see Figure 4.2). Therefore, the MLS, keeps
information on various levels of details. Each level describes the image color
content, deeper levels keep more details.

A potential problem of the quad tree splitting is that it ignores the object
boundaries. In general, objects of relevance will not nicely fit a cell. When
an object inside the image lays in the center of the image, its color features
will contribute to all four parts, so it will mix with the rest of the colors in
those parts and, therefore, have a limited effect on the selection. Objects

4.2. IMAGE RETRIEVAL BY CONTENT 67

mls(MLS sig, Image i){
color_feature(sig, i);
if (stop_condition(sig))

return;
quad_split(i, r00, r01, r10, r11);
mls(sig, r00); mls(sig, r10);
mls(sig, r01); mls(sig, r11);

}

Figure 4.1: Quad-split pseudo code

0

01 11

1000

03 13 23 33

32221202

31211101

30201000

I
I I

II

I
I
I

I
I

I

I
I I

I I
I

II
II

Figure 4.2: The quad splitting process

which extend over the borders of the image part may have less influence
to the MLS. Therefore, we came up with a slight variation on the quad-
tree splitting process, the prime-factor method. the prime-factor splitting
process splits each time the original image in p2 parts, where p is a prime-
factor. See figure 4.3. for a graphical example of a prime-factor split. The
effect of objects crossing grid boundaries is reduced, since the prime-factor
split makes sure that grid boundaries are always on a different place for
each level. Grid elements at lower levels are not fully contained in a cell at
a higher level. They combine information from parts of upper layer cells.

Figure 4.3: The prime splitting process

4.2.2 Data Model for MLS Image Database

The data produced in the splitting process is stored in BATs managed by
Monet. This required extension of the system with an atomic type Image.
Its implementation provides the operational primitives to handle image pro-
cessing in a structured way; orthogonal to the other data types. See Section
3 for details of this module.

68 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

MLS_icon

OID SREPCREPOIDOIDOIDImageOIDImageOID

MLS_image MLS_source MLS_color MLS_spatial

Figure 4.4: The relational data model used for storing the multi level
signature.

The BATs for our retrieval system (MLS) are MLS source, MLS color,
MLS spatial, MLS image and MLS icon, (see Figure 4.4). MLS image con-
tains the actual image data. In MLS icon an icon of the image is stored.
Showing icons instead of the whole image reduces retrieval cost (less data
needs to be transfered) and image display.

MLS source contains the relationship between image fragments and their
source. For each image fragment a pair of object identifiers (cell, image) is
stored to indicating this relationship. Although we could have used a single
data type to represent both spatial and color features together, using some
form of pyramid structure, we decided upon separation. This is done to
easily extent the system with different features calculated over the image
parts, such as texture, shape and alternative color , and spatial features.

MLS color contains the color feature, i.e. the average color, for each
image-fragment.

In our prototype implementation we use the prime color component of
the HSV-color model[65]. The reason is to be robust against light reflections[46].
Furthermore, the hue closely resembles the human perception of related col-
ors, which improves image retrieval from an ergonomic perspective.

MLS spatial contains the spatial description of each image fragment. It
describes the spatial information obtained by the splitting process. We use
a simple spatial representation, i.e. a box. To keep the description scale
invariant we used normalized positions, i.e. box(0,0,1.0,1.0) describes the
whole image, and box(0.5,0.5,0.5,0.5) describes the first bottom right image
fragment of the quad split.

4.2.3 Stop Condition

Image splitting continues up to the point that further splitting does not
produce significant new information about the spatial color distribution.
This requires a flexible and user-controlled stop condition. For example,
splitting stops when one of the following conditions occurs:

1. Stop when the split level equals some predefined α.

4.2. IMAGE RETRIEVAL BY CONTENT 69

2. Stop when the average color of corresponding parts on level n and n+1
differs less than some δ.

3. Stop when there are less than γ colors remaining in a sub image.

4. Stop when the MLS vector occupies too much space.

5. Stop when the area of the image fragments is less than β2 pixels.

The first condition is independent of the image content. The second con-
dition is intended to signal smoothness, but it suffers from large outlayers.
The third variant would be of use if the image contains a large number of
small details with different color distributions. In the worst case the index
becomes larger than the image itself, due to overhead of the index data
structures. The fifth condition uses a multi level resolution principle. We
choose the third option, since it is less sensitive to outlayers and combine it
with the first and last. This way, the index storage size will never exceed
the image size.

4.2.4 Querying the image database

The selection process is initiated when the user specifies a query image,
which should be a representative sample of the desired answer set. The pro-
cess will split the query image recursively and uses the signatures obtained
to exploit the index. The spatial information is used to assure that can-
didate images in the database have the same spatial relationships amongst
them as the query image.

We will look at the selection process of quad split and calculate algo-
rithm in detail. From the image database the candidate (sub) images CIs,
are selected based on an equal bounding box. Equal bounding boxes are
required, since we are only looking for similar images, not for images with
a similar sub-image. From this set of candidates images are selected which
have an average color within a given range from QIs average color. Using the
source relation the original images belonging to the selected (sub) images
are found.

QI is then split into 4 parts as described before. For all parts the av-
erage color and bounding box are calculated. They are used to reduce the
candidate image set. Again the (sub) images with equal bounding boxes are
selected from the set of candidate images. Only those images which have
for all parts a similar average color as QIs parts are selected.

The selection process continues until a small enough answer set is reached.
The selected images are than ranked, based on a similarity measure taking
both spatial and color properties into account. The similarity measures
known from literature, Histogram intersection[106] and Histogram distance
[41] do not use spatial information.

70 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

Instead, we use a similarity measure, called the Multi-level signature
similarity measure, which computes the weighted distance between the sig-
natures of the query image and the selected images on the split level on
which the images where retrieved. The similarity measure requires a non-
expensive computation. Formally, at each level λ the similarity between the
QI and CI is calculated as

δ(QI,CI) = 1− n

√√√√(
n∑
i=0

(
CQIi − CCIi

cb
)2)

Where Ci is the average color of the sub image with i as its spatial represen-
tation. The n is the number of spatial descriptions at level λ. The function
is normalized using the maximum color difference cb found in the database.

Figure 4.5: The prototype image retrieval system.

4.2. IMAGE RETRIEVAL BY CONTENT 71

4.2.5 Prototype and Experiment

An early prototype image retrieval system was implemented in 1997. It uses
the Monet version 3.0 database kernel and the image extensions explained in
Chapter 3. A graphical user interface was build using Tcl/Tk[85]. Queries
are specified by selecting an example image from a set of image taken ran-
domly from the image database. Figure 4.5 shows a screenshot of the system.
The result of this query are images ordered on their similarity.

An indepth evaluating of image similarity measures and retrieval quality
was beyond the scope of this thesis. Our focus was to provide a layer of
database functionality to be used by image analysis researchers to pursue
this task. To illustrate that the MLS description is a valuable addition to
the existing set of image descriptions, we conducted a small (non-exhaustive)
experiment. The experiment is conducted with a database of video frames,
coming from multiple video sequences. Our approach returns all the frames
of the same scene followed by images that have a significant less similarity
value. Even when they are distributed over multiple shots.

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000

Q
ue

ry
 T

im
e

(s
)

�

nr ref. points

"quad"
"prime"

Figure 4.6: The results of the Scalability Experiment.

Scalability experiments were conducted using database sizes from 100 to
3000 images to evaluate the query-by-example processing time. The results
can be seen in Figure 4.6. It confirmed that the processing time is linear in
the number of images, which is achieved because larger databases will require
images to be compared on more levels. Although linear is adequate for small
sized databases for larger databases better use of the index structures is
required.

The retrieval performance of the prime-split algorithm is about the 20
to 50 percent better. This indicates less calculations are required to answer
the queries, i.e. smaller trees need to be compared.

72 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

4.2.6 Conclusion

Monet could be used -extended, queried- for the task a hand
From this exercise we can derive requirements for the Image Retrieval Al-
gebra:

Multiple Image Descriptions Although the MLS is a valuable addition
to the set of image descriptions, it becomes clear that alternative descriptions
are needed. Therefore, one or more abstract image descriptions are needed.

Partial Image Queries The Image Retrieval Algebra should support
global image queries, but also partial image queries (Point based retrieval
does not require an expensive index)

Index Structures A retrieval algebra requires proper support by Index
structures.

4.3 Segment Image Indexing

The early experience with the MLS image description showed its advantages,
but its applicability is limited to support localization of images according
to query Q1. It confirmed that the average color of successively partitioned
regions provide a good handle to steer the query process.

In this section we evaluate the viability of a segment based approach,
both the segmentation process and storage implications are considered hav-
ing in mind a image database of 1 million images. Segment based image
retrieval would accommodate queries of type, ”find me images similar to
(this and) this segment” (Q2). Again we take a grid base approach, know-
ing that proper image segmentation is an unsolved process in image analysis
research.

Segments are found using both a split and a merge image indexing algo-
rithm. Two kinds of algorithms are considered; a top-down method based
on recursive splitting, called S-split, and a bottom-up method based on suc-
cessive merging, called S-merge. The former recursively splits an image into
smaller segments until their feature vectors dissimilarities fall below a cut-
off point. The image objects thus considered are all rectangular in shape.
The latter uses a bottom-up strategy, i.e., rectangular regions are merged
to form segments as long as their feature vectors are closely related. This
leads to more general image objects. The effect of this approach compares
with R-trees in GIS, which have proven effect for spatial filtering.

4.3. SEGMENT IMAGE INDEXING 73

4.3.1 Segment Indexing

The key challenge is to develop an efficient algorithm to locate the segments
of interest for a given image. No attempt is made to detect or infer hidden
faces. Neither do we consider a search for optimal segmentation schemes
common in image recognition research. We conceive the index primarily as
a filter for applications dealing with image retrieval.

The algorithm S-split finds the collection of discriminating segments by
recursively splitting the image into two sub-images. Splitting is attempted
both horizontally and vertically. Sub-images are chosen such that their dis-
similarity in average Hue is maximal. This improves the selectivity of the
individual segments.

The recursive process is controlled by several stop criteria as follows.

- Let Ii be an image split into two segments Ii,1 and Ii,2, Then the new
segments are added to the img segment index provided their average
Hue differs from Ii more then a given minimal threshold Hthreshold.
This guards against storing redundant information into the database.

- The size of the resulting two segments should both be larger than some
threshold. This guards against border effects and too small segments.

- The maximal number of segments per image is limited by a system
parameter, Hobjects. This guards against repeatedly splitting images
up to the pixel level. Instead, we assume that a limited number of
segments (possibly dependent on the image size) is often sufficient.

The worst case complexity of this algorithm is O(d ∗ n2) with n the
maximum image width or height and d is equal to Hobjects.

Usually, d will be less than Hobjects because of the first stop condition.
The algorithm S-merge attempts to merge segments into larger units. The
algorithm starts by dividing the original image into equal sized segments
using a grid layout. Each grid element is a candidate segment for inclusion
in the img segment index. The minimal grid size considered is Hgrid pixels.

Subsequently, we repeatedly attempt to combine segments into larger
units as follows. Let Ii and Ij be two segments, then they are merged into
a single segment Ik if the following criteria hold.

- The average Hue of both segments Ii and Ij differ at most by a given
constant Hthreshold.

- Both segments share at least one edge. Otherwise far apart segment
will be merged

- The merge is locally optimal. Only merge the closest neighbor both
in spatial and in color distance.

74 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

A spatial join operation finds all pairs in the 8-connected neighborhood.
Then, in a recursive process, the similarity measures for all pairs are cal-
culated using the average hue. Using Hthreshold the merge candidates are
selected. One segment can have 8 possible merge candidates. We can not
simply merge all candidates, because then the similarity measures between
the segments merged together could be much larger than Hthreshold. Only
one pair could be merged per iteration. We select the candidate with maxi-
mum similarity. If there are more candidates with equal similarity we select
one at random. Once the pairs are selected we can update the histograms.
The image features are derived from the enlarged image Ik using the prop-
erties of its constituents.

This process continues until no more segments can be merged. The
worst case complexity of this algorithm is O(n2ln(n)), with n the number
of segments to start with.

There are large differences between the two algorithms considered. The
S-split algorithm uses a simple segment representation, since splitting a
rectangle always results in two new rectangles. Conversely, S-merge needs a
polygon to follow the object boundaries.

An advantage of S-merge is that it enables reuse of the hue average. The
nature of splitting does not allow us for such reuse of intermediate results
at all. At each stage we have to inspect all pixels. A potential disadvantage
of S-merge would be the large number of polygons to start with. The split
algorithm starts with only one rectangle. In Section 4.3.3 we study the
performance cost to gain a better understanding of the scalability.

Both algorithms are based on the same similarity function. They merely
differ in its interpretation. The similarity function calculates the weighted
distance between the features in that segment. The similarity for a single fea-
ture of two segments is calculated using the following function: S(R1, R2) =
((FR1

−FR2
)

weight)2, with segments R1 and R2 and primary feature F .
The collection segments following from the S-split/S-merge phase are

used to calculate the secondary segment features. These features are inserted
into the described BATs.

4.3.2 The Query Primitives

Query formulation is based on a single sample, i.e. query by example. This
command returns a ranked list of images similar to the sample image. The
command first calculates the collection of no overlapping segments from
the given example image using the S-split/S-merge algorithms. For each
segment the a set of features are calculated. These features are used to
select similar segments, using a special similarity join operation.

For all selected images the total similarity is calculated. This is the sum
of the similarity measures of all the supporting segments divided by the
number of segments in the example image collection of segments.

4.3. SEGMENT IMAGE INDEXING 75

The query processing is facilitated by the primitives shown in Table 4.1.
The first group controls the global or segment features to be used, such as
control over invariance to certain transformations. For example to search
invariant of rotation the user should not use the dominant texture angle.

The second group controls how much segment features may differ to still
be classified as ”similar”. The similarity join operation uses this primitive
feature to find the similar segments. This join operation finds all pairs
x,y where the similarity of the features for x and y is within the specified
minimum.

The last group controls which query type should be used. Also both
query by example types can be selected. The primitives for text based
retrieval are not given here.

Query Primitive comments
use avg hue use the average hue
use dom angle freq use the frequency of the dominant texture angle
use dom angle use the dominant texture angle
use histogram use the global hue histogram feature
use area use the area of the segments
use neighboor dist use the distance between the closest neighbor
avg hue diff max. difference between hue values
dom angle freq diff max. difference between angle frequencies
dom angle max. difference between angles
histogram diff max. difference between histograms
area diff max. difference between the areas
neighboor dist max. difference between neighboor distances
sub image queriing Query type B
image queriing Query type A

Table 4.1: The Query Primitives

4.3.3 Experimental results

We conducted several experiments to show that the envisioned database
of one million images could use a technique, like Region Image Indexing,
to support partial image queries. Construction of this database requires
a step-wise approach, because its construction is both CPU and storage
intensive. Therefore, we conducted two kinds of initial experiments. First,
we determine the resource requirements for the indexing algorithms on a
small footprint 500-image database. Second, a web-robot is used to take a
sample to assess scalability.

The 500-image database is a standard database for image analysis research[110]
at the University of Amsterdam. As such it provides a reference point for the

76 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

algorithms in terms of precision later on. We fed a sample of 100 256x256
sized images to both S-split and S-merge to determine the average num-
ber of segments in an image. This depends on the algorithmic parameters
Hthreshold, Hobjects and Hgrid.

Figure 4.7 illustrates that S-merge should start with a reasonable grid
size, i.e. very small grid sizes gives to many regions. Figure 4.8 illustrates
that Hobjects should be set to 32, since splitting deeper will generally not
result in more segments, due to the image size. It also illustrates that S-split
finds more segments.

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70

of

 r
eg

io
ns

�

grid size

"H_threshold=0.1"
"H_threshold=0.01"

"H_threshold=0.001"
"H_threshold=0.0001"

Figure 4.7: The number of segments using the S-merge algorithm

Based on these experiments we can predict the storage and processing
requirements for the complete database. The segment administration con-
sumes 18 bytes in the current implementation. This should be multiplied by
min{ Hobjects, S} where S is the actual number of segments determined by
the algorithm. With a starting grid size of a single pixel the average number
of segments found by S-merge is less than 200, i.e. approximately 4Kb to
store the segment features and index structures. S-split leads to many more
objects and requires about 9Kb per image. This leads to an index size of
about 4 Gbyte for a database of 1M images.

In addition, we need space for the global features, e.g. url, keywords
and key-phrases, and secondary features, e.g. histogram and texture. To
assess the size and to confirm the index resource requirements, we used the
web-robot to obtain the first sample of about 1K GIF images from the NL
domain. Table 4.2 shows the BAT sizes of this 1000 image large database. It
indicates that far less than 200 segments are found per Internet image. This

4.3. SEGMENT IMAGE INDEXING 77

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70

of

 r
eg

io
ns

�

Max. dept

"H_threshold=0.1"
"H_threshold=0.01"

"H_threshold=0.001"
"H_threshold=0.0001"

Figure 4.8: The number of segments using the S-split algorithm

means that our 500-sample is an upperbound for the storage requirements.
The table also shows the number of keywords and the distribution of multi-
media objects. The storage requirements of the icon is 7.5 K and about 2.5
for the remaining features, leading to a total of about 15 Gbyte.

BAT name count
mmo url 1002
mmo name 1002
txt keyword 17340
txt phrase 612
img segment 9042
ir hue 9042
ir texture 9042
ir area 9042

Table 4.2: Bat sizes

The final question to consider at this stage is whether creation of the
Region Image Indexing database won’t take forever. To quantify this, we
ran a small experiment on 100 images to determine the wall-clock for the
complete process. The Figures 4.9 and 4.10 show the timing results for the
S-merge and S-split using different threshold values.

S-split and S-merge dominate the insertion cost, e.g. with a grid size of
4x4 pixels S-merge takes less than 3 seconds. Since localization and down-

78 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

0.1

1

10

100

0 10 20 30 40 50 60 70

of

 r
eg

io
ns

�

grid size

"merge.times.0.1"
"merge.times.0.01"

"merge.times.0.001"
"merge.times.0.0001"

Figure 4.9: Execution times S-merge algorithm

load of the candidate images can take place in the background in parallel
this enables downloading of 30K images per day per CPU.

4.3.4 Conclusions

In this section we have introduced the necessary data structures and op-
erators to build a image database system aimed at supporting embedded
image querying. We have experimentally demonstrated that a bottom-up
index construction outperforms a top-down approach in terms of storage re-
quirements and performance. The storage overhead for the segment feature
index of an image is about 4 Kbytes.

From this exercise we can also derive requirements for the Image Re-
trieval Algebra:

Extensible with new Region/Segment features The set of Region
and Segment features will only grow. Therefore, the image algebra should
be extensible with new region and segment features.

Query Primitives for Segment construction and Retrieval To
support multiple segmentation algorithms primitives are needed for segment
construction and retrieval.

Index Structures for Region/Segments To make efficient use of re-
gions and segments index structures are required.

4.3. SEGMENT IMAGE INDEXING 79

1

10

0 10 20 30 40 50 60 70

of

 r
eg

io
ns

�

grid size

"split.times.0.1"
"split.times.0.01"

"split.times.0.001"
"split.times.0.0001"

Figure 4.10: Execution times S-split algorithm

4.3.5 Image Retrieval Algebra

The image retrieval problem is a special case of the general problem of object
recognition. When objects can be automatically recognized, and condensed
into semantic object descriptors, the image retrieval problem can be solved
using conventional database technology. Unfortunately, object recognition
is solved for limited domains only. This calls for an image feature database
model and a query algebra in which a user can express domain specific
knowledge to recognize the objects of interest.

Such query algebra has the following requirements:

1. The algebra should support navigational queries and query refinement.

2. The algebra should be data independent.

3. The algebra should be based on an extensional relational framework.

4. The algebra should support proximity queries and the computational
approach should be configurable by the user.

5. The algebra should be computationally complete to satisfy the wide
community of (none-database) image users.

Research on image retrieval algebras has so far been rather limited. The
running image retrieval systems support query by example[41] or by sketch
[101], only. For example, the interface of the QBIC system lets the user
choose for retrieval based on keywords or image features. These systems

80 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

have a canned query for which only a few parameters can be adjusted. It
does not provide a functional or algebraic abstraction to enable the user to
formulate a specific request. In the WebSeek Internet demo the user can
adjust a color histogram of a sample image to specify the more important
colors. However, this interface allows no user defined metric on colors.

Only Photobook [87] supports user defined similarity metric functions
through dynamically loadable C-libraries. Although this approach is a step
forward, it is still far from a concise algebraic framework that has boosted
database systems in the administrative domain. In section 4.4 we introduce
the components of such an algebra.

4.3.6 Logical Image Data Model

The logical data model needed for an image retrieval systems is shown in
Figure 4.11. Requirements for a logical data model are: be able to capture
the raw data and provide hooks to reason about semantic objects.

The top of the data model captures the image. In abstract terms, an
image is a mapping from a set of pixel positions (X) to a set of pixel value
(F). In traditional systems the constraints implicit in the data model is that
all possible pixel values in a 2-D region are part of an image. As explained
in Chapter 3 we use the BAT to store these mappings.

Pixel values and their pixel positions are the raw data of the images.
Pixel positions can be grouped together to from regions. Each region is a
two dimensional fully connected space, i.e. no holes. Each pixel position
can only be part of one region.

The next level consists of segments. Segments are simply a set of re-
gions. Since many image segmentation algorithms exist, all with their own
strengths and weaknesses, regions could be assigned to many segments.
These segmentation algorithms could use both the spatial and range val-
ues of the pixels of the underlying regions. A segment can contain holes,
since a set of regions with similar features, for example similar color and
texture, could enclose other segments with completely different features.

Segments can be merged to form objects. Each segment can end up in
many objects. Object represent semantic entities, such as cars and persons.
For example a car is made up out metal, glass and rubber, which all have a
different features.

This shows that a logical image data model requires topological and
spatial operators and abstract data types.

4.3.7 Physical Segment Representation

The bulk of the storage deals with region and segment representation. Large
image databases require a segment representation, which is compact without

4.3. SEGMENT IMAGE INDEXING 81

n

1

n

n

n

1

1

n

11

1

Object

Image

Pixel
Position

Region

Segment

Value
Pixel (F) (X)

Figure 4.11: Image Retrieval Algebra Data Model

data loss. Many different approaches exist. All have proven to be useful in
a specific context, but none is globally perfect.

The chain code as described by Freeman [44] encodes the contour of a
segment using the 8-connected neighborhood directions. Chain codes are
used in edge, curve and corner finding algorithms [70]. It is not useful for
segment feature extraction, since it only represents part of the boundary
of an area, no interior structure is seen. The complexity is O(p) for both
storage and performance, where p is the perimeter of the segment.

Many boundary representations exist [61], e.g. polygons and functional
shape descriptors. Functional shape descriptors use a function to approxi-
mate the segment boundary. Fourier, fractal and wavelet analysis have been
proposed for this [22, 71, 95]. Although these representations can have low
storage requirements, i.e. each boundary could be represented using a few
parameters, they are of limited use aside from shape representation. Re-
calculation of the segments interior from polygons is very hard and from

82 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

functional descriptions generally impossible.
A representation to also describe the interior of the segment is run length

encoding using (position, length) pairs in the scan direction [48]. This simple
jet compact representation captures details description of the segments out-
line. Diagonal shaped segments are handled poorly by this coding schema.

The pyramid structures [109, 108] represent an segment using multiple
levels of detail. They are used in image segmentation and object recognition
[109, 89]. These structures are in carnations of to the quad tree [92]. The
quad tree is a hierarchical representation, which divides segments recursively
into four elements. The quad tree has been used to represent binary images
efficiently. The tree needs only to store those segments which have a different
color than its parent nodes. The complexity of this structure per segment
is O(p+ n), where the segment is located in a 2n ∗ 2n image and p is again
the perimeter of the segment. Quad trees can be stored efficiently using a
pointerless representation.

Since none of the structures above solve the segments representation
problem, there is a strong need for an extensible framework. It would permit
domain specific representations to be integrated into a database kernel, such
that scalable image databases and their querying becomes feasible.

To explore this route we use a minimalistic approach, i.e. regions are
described by rectangular grids and segments by sets of regions. In line with
Section 4.3, the underlying DBMS can deal with them in an efficient manner.

Database Scheme

The core of the database schema is illustrated in Table 4.3.
The first bat group illustrate the administration of multi-media objects

located on the Web. Observe that their URL is sufficient to gain access upon
need. The second bat group contains features obtained from the source, i.e.
information part of the image representation format.

The final group contains features to support region-based querying. Fea-
tures are used for the image segmentation process. For each obtained seg-
ment a set of features can be calculated. The img region bat enumerates
the regions in each image. The remaining bats represent features derived
to support image querying.

4.4 Algebraic Primitives

Analysis of the requirements encountered in image retrieval application and
the techniques applied in prototype image systems, such as [41, 101, 46],
indicate the need for algebraic operators listed in Table 4.4. The parameter
i denotes an image, p a pixel, r a region, s a segment and o an object. Most
functions are overloaded for many types. T0 indicates that the function is

4.4. ALGEBRAIC PRIMITIVES 83

BAT name Comments
mmo url resource locator
mmo name document base name
mmo kind {audio,image,video}
mmo cntxt enclosing document
mmo time last access time
mmo censor { copyrighted, X-rated }
txt keyword keywords for an MMO
txt phrase key phrase for an MMO
img type {gif,tiff,jpeg,png,bmp,ppm}
img size image width x height
img depth pixel depth
img stamp derived icon
img icon user defined icon
img region image-region mapping
ir color region average hue
ir domhue dominant hue
ir domangle dominant angle
ir histogram region hue histogram
ir area region area

Table 4.3: Database schema

defined to work on the types: pixel, region, segment and object. T1 indicates
the function are defined for all types in T0 and on images.

The first group provides access to the basic image features, such as pixels,
regions, segments and objects. Their value is either redundantly stored as
as materialized vier or calculated upon need. The Point, Color, Vector and
Histogram datatypes are sufficient extensions to the base types supported by
the database management system to accommodate the features encountered
in practice so far.

The second group defines topological relationships. This set is taken
from [25], because there is no fundamental difference between spatial infor-
mation derived from images and spatial information derived from geographic
information systems.

The third group addresses the prime algorithmic steps encountered in
algorithms developed in the Image processing community. They have been
generalized from the instance-at-a-time behavior to the more convenient
set-at-a-time behavior in the database context. This group differs from tra-
ditional relational algebra in stressing the need for θ-like joins and predicates
described by complex mathematical formulae.

A image join (F join) combines region pairs maximizing a match func-
tion, f(rs, rs) → float. The pairs found merge into a single segment. The

84 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

metric join (M join) finds all pairs for which the distance is less than the
given maximum m. The distance is calculated using a given metric func-
tion, d(rs, rs) → float. The last function in this group, called predicate
join (P join), is a normal join which merges regions for which the predicate
p holds. An example of such an expression is the predicate ”similar”, which
holds if regions r1 and r2 touch and the average colors are no more than 0.1
apart in the domain of the color space. A functional description is:

similar(r r1, r r2) :=
touch(r1, r2) and
distance(r1.avg color, r2.avg color) < 0.1

The next group of primitives is needed for selection. The image find
(F find) returns the region which best matches the given region, according
to function f(rs, rs). The metric select (M select) returns a set of regions at
most at distance m, using the given metric d(rs, rs) function. The predicate
select (P select) selects all regions from the input set for which the predicate
is valid.

The last group can be used to sort region sets. We have encountered
many algorithms with a need for a partial order. P sort derives a partial
order amongst objects. Each entry may come with a weight, which can be
used by the metric sort (M sort). This sort operation is based on a distance
metric between all regions in the set and a given region. The N sort uses a
function to map regions onto the domain N .

After the partial order the Top returns the top n objects of the ordered
table. The Slice primitive will slice a part out of such an ordered table. The
Sample primitive returns a random sample from the input set.

4.5 Acoi Image Retrieval Benchmark

To show the maturity of the algebra we can now formulate a functional
benchmark for image retrieval problems. Many such benchmarks have steered
progress in DBMS development in a variety of application areas. Examples
in transaction processing are the TP series developed by the transaction
processing community[55] and in geographic information systems the SE-
QUOIA 2000 storage benchmark. We are not aware of similar widespread
benchmarks for image retrieval.

The construction of such a public benchmark would benefit both the
database and image processing community. Its primary purpose is to demon-
strate function and to support research in image processing and analysis in
a database context. Based on our experimentation in both fields, we de-
rived the following characteristics from the algorithms used in the image
processing domain.

• Large Data Objects The algorithms use large data objects (>40k).
Both in terms of base storage (pixels), but also the data derived incurs

4.5. ACOI IMAGE RETRIEVAL BENCHMARK 85

large space overhead.

• Complex Data Types The algorithms often use specialized complex
data types. No distinction is made to between logical and physical
models. Derived data is often stored in special data structures.

• Fuzzy data The computational model used is based on heuristics and
fuzzy data often embedded in application code or a probabilistic model.
This fuzzy data should be accompanied by some form of fuzzy logic.

The Acoi Benchmark Data The database for the benchmark consists
of two Image sets, one of 1K images and one of 1M images. The images are
retrieved randomly from the Internet using a Web robot. The set contains
all kinds of images, i.e. binary and gray scale, small and large but mostly
color images.

The Acoi Benchmark Queries Based on the characteristics encoun-
tered in the image processing community, a set of 6 distinctive queries for
the benchmark has been identified, as shown in Table 4.6.

Query 1 loads the database from external storage. This means stor-
ing images in database format and calculation of derived data. Since the
benchmark involves both global and local image features this query may also
segment the images and pre-calculate local image features.

Query 2 is an example of global feature extraction as used in QBIC.
This query extracts a normalized color histogram. We only use the Hue
component of the HSB color model. The histogram has a fixed number of
64 bins. In query 3 these histograms are used to retrieve histograms within
a given distance and the related images. The histogram h should have
16 none-zero bins and 48 zero. The none-zero bins should be distributed
homogeneous over the histogram. The query Q3a sorts the resulting set for
inspection.

Query 4 finds the nearest neighboring regions in an image. Near is
defined here using a user-defined function f . This function should be chosen
so that neighbors touch and that the colors are as close as possible.

Query 5 segments an input image. Segmentation can also be done with
specialized image processing functions, but to show the expressive power of
the algebra we also include it here in its bare form. Finally Q6 searches
for all images in the database which have similar segments as the example
image. The resulting list of images is sorted in query 6a.

The Benchmark Evaluation To compare the results of various im-
plementations of the benchmark we used the following simple overall eval-
uation scheme. The performance of the Acoi Benchmark against differ-
ent implementation strategies can be compared using the equation score =

86 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

((Q1 +Q2)/DBsize+Q3 +Q3a +Q4 +Q5 +Q6 +Q6a)/8, where Qx are the
execution times. This way moving a lot of pre-calculation to the DB-load
query will not improve performance unless the information stored has low
storage overhead and is expensive to recalculate on the fly.

4.6 Initial Performance Assessment

The benchmark has been implemented in Monet using its extensible features.
The DB-load query loads the images using the image import statement into
the Acoi Images set. We only load the images in the system. No pre-
calculation has been performed.

The color histogram query (Q2) can be expressed in the Acoi algebra as
follows:

var Q2 := [normalized_color_histogram](Acoi_Images);

The brackets will perform the operation normalized color histogram on
all images in the Acoi Images set. It returns a set of a histograms. Q3
uses a M select with the L2 metric. The sorting of Q3a can be done using
the M sort primitive. Query Q4 is implemented in the Acoi algebra using a
F join with the function f(r1, r2) defined as follows:

f(r1, R2) :=
dist(r1.color(), r2.color()) if r1.touch(r2)
max dist

Queries 5 and 6 are implemented by longer pieces of Monet code??. The
segmentation of query Q5 use an iterative process. This process can make
use of the F join primitive to find the best touching regions based on the
color distance, see [79] for full details.

Query Q6 can be solved using a series of M select calls. For each segment
in the example image we should select all Images with similar segments,
where similar is defined using the metric given. The intersection of the
selected images is the result of query 6. This can be sorted using the M sort
primitive.

The Benchmark Results We run these queries using the small Acoi
database of 1K images. The small benchmark fits in main memory of a large
workstation. The database size is approximately 1G. We used a Sparc Ultra
II with 128 MB of main memory running the Solaris operating system,
to perform the benchmark on. Using the Acoi algebra we were able to
implement the benchmark with little effort.

The initial breakdown of the results can be found in Table 4.6, which
leads to the overall benchmark score is 1.158.

In the result we can see that the DB-load query takes more than 80
percent of the overall benchmark result. This unexpected result stems from

4.7. CONCLUSIONS 87

heavy swapping of the virtual memory management system. Main memory
runs out quickly, so swapping will influence the performance. Based on our
early experimentation with multi-Giga-byte databases this problem can be
resolved with some careful loading scripts.

We found that the results of queries Q4 and Q5 were low. The non-
optimized current implementation of F join was responsible for the low per-
formance. To improve it we moved the spatial constrains out of the F join.
This allows us to find candidate pairs based on the spatial relation between
regions quickly. This way we improved the performance of the queries Q4
from 5 to 1 second and Q5 from 21 to 1.2 seconds using a few minutes of pro-
gramming. A similar step in a traditional image programming environment
would have meant partly re-coding several pages of c/c++ code.

4.7 Conclusions

In this chapter we introduced an algebraic framework to express queries on
images, pixels, regions, segments and objects. We illustrated the expressive
power of the Acoi algebra using a representative set of queries in the image
retrieval domain. The algebra allows for user-defined metric functions and
similarity functions, which can be used to join, select and sort regions. The
algebra is extensible with new region properties to accommodate end user
driven image analysis in a database context.

We have implemented the algebra within an extensible DBMS and devel-
oped a functional benchmark to assess its performance. In the near future
we expect further improvement using extensibility in search methods and
index structures to improve the performance of the algebra. As soon as the
full Acoi database is ready we will perform the benchmark on the set of 1M
images.

88 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

Properties
area(T1) → float
perimeter(T1) → float
center(T1) → point
avg color(T1) → color
color hist(T1) → Histogram
texture(T1) → vector
moment(T1) → float

Topological operations
touch(T0, T0) → boolean
inside(T0, T0) → boolean
cross(T0, T0) → boolean
overlap(T0, T0) → boolean
disjoint(T0, T0) → boolean

Join operations
F joinf(T0,T0)({T0}, {T0}) → {T0}
M joind(T0,T0),m({T0}, {T0}) → {T0}
P joinp(T0,T0)({T0}, {T0}) → {T0}
Selection operations
F findf(T1,T1)({T1}, T1) → T1

M selectd(T1,T1),m({T1}, T1) → {T1}
P selectp(T1,T1)({T1}, T1) → {T1}
Ranking and Sample operations
P sort({T1}) → {T1}
M sortd(T1,T1)({T1}, T1) → {T1}
N sort({T1}) → {T1}
Top({T1}, int) → {T1}
Slice({T1}, int, int) → {T1}
Sample({T1}, int) → {T1}

Table 4.4: The Image Retrieval Algebra

Join operations result
F joinf (L,R) →{T0} {lr|lr ∈ LR, 6 ∃l′r′ ∈ LR ∧ f(l′, r′) > f(l, r)}
M joind,m(L,R) →{T0} {lr|lr ∈ LR ∧ d(l, r) < m}
P joinp(L,R) →{T0} {lr|lr ∈ LR ∧ p(l, r)}
Selection operations result
F findf (L, r) →T1 l ∈ L, 6 ∃l′ ∈ L ∧ f(l′, r) > f(l, r)
M selectd,m(L, r) →{T1} {l|l ∈ L ∧ d(l, r) < m}
P selectp(L, r) →{T1} {l|l ∈ L ∧ p(l, r)}

Table 4.5: Signatures of the Join and Selection operations

4.7. CONCLUSIONS 89

nr query
Q1 DB-load
Q2 {h|i ∈ Imgs ∧ h = normalized color histogram(i)}
Q3 {i|i ∈ Imgs ∧ L2distance(normalized color histogram(i), h) < 0.1}
Q3a sort Q3
Q4 {n1n2|n1n2 ∈ Regs(im)∧ 6 ∃n3 ∈ Regsf(n1, n3) > f(n1, n2)}
Q5 {rs|rs ⊂ Regs(i) ∧ ∀r1r2 ∈ RS :

L2distance(avg color(r1), avg color(r2)) < 0.1
∧∃s0 . . . sn ∈ rs :
r touch s0∧
si touch si+1∧
sn touch s}

Q6 {i|∀si ∈ Q6(i)∃se ∈ Segs(e)
d(si, se) < min dist}

Q6a sort Q6

Table 4.6: Benchmark Queries

Query Time(s)
Q1 2865
Q2 598
Q3 1.5
Q3a 0.3

Query Time(s)
Q4 1.0
Q5 1.2
Q6 1.5
Q6a 0.3

Table 4.7: The Acoi Benchmark Results

90 CHAPTER 4. THE IMAGE RETRIEVAL ALGEBRA

Chapter 5

Image Analysis: A case study

Image retrieval systems form an interesting, but small subset of the potential
application of image databases. Our conjuncture is that image analysis
researchers can also benefit from such systems in their day-to-day activities.

Currently, in image processing research, each analysis step is programmed
in a third generation programming language. These languages are not known
for their ease of programming, code maintenance, and reuse-ability. An ob-
ject oriented programming style, such as seen in Java and C++, partly solves
the maintenance and reuse problems. Java still suffers from performance
problems. These problems are countered with proprietary data structures
and associated operations to obtain better performance. Likewise, C++ still
suffers major compiler compatibility problems when distribution to different
platforms is the objective.

Besides the cumbersome programming language, programmers in image
analysis often focus on hard recognition problems in isolation. It is not
uncommon to be confronted by throw away code, because there is limited
tendency to develop code for reuse. As a result, they also lack writing proper
documentation and the image analysis community is stuck with software
hard to maintain and reuse. Although, exceptions on these rules exist,
such as the Horus image library[112], the current software approach hinders
progress in this area.

The approach taken in this thesis is to use database technology as a step
forward. A database system challenged to support image analysis has to
overcome the following problems:

Erroneous Data The initial image data (and all derived data) contains
errors due to inaccuracy of the measuring devices. Errors largely come
in two flavors: the discretisation error from scanning (devices) and
use of inadequate data structures. To illustrate the former, scanning
devices have physical constraints on the LED’s. To illustrate the latter,
one could store a line simply by the end points, which again makes
it dependent on the discretisation technique (i.e. grid precision)[51].

91

92 CHAPTER 5. IMAGE ANALYSIS: A CASE STUDY

Another option is to use a triplet of center point, orientation and
length, which is much less dependent on the discretisation technique.

Proximity and Probabilistic reasoning The fuzzy data involved requires
mechanism to support proximity-based queries and a probabilistic
computational model, This is currently not supported by database
management systems. A step into this direction is researched by [32].

Multiple representations Many possible derived data features exist and
each one can be represented in several ways, while transformations
between them is generally not loss-less. The system should be able to
handle all in a uniform way and decide on what to materialize.

Existing Algorithms Many image analysis algorithms exists and one may
not expect image researchers to rewrite them into database queries.
Instead, these often time consuming algorithms should be callable from
the query language directly. To be useful in a database context they
should be side effect free, otherwise any optimization is impossible. A
criterion hardly ever met.

In this chapter, we propose to add core image processing functionality to
the database management system, making it a better tool for image analysis
research as well. The approach taken is to identify missing parts using a
single representative case: ”line clustering”. The ”line clustering” problem
has been chosen, because it is a long standing problem in image analysis
research and, therefore, an acceptable solution is known. The outcome of
this experiment are operator and database requirements.

The human visionary system seem to recognize straight lines in images
easily. Even when the lines are broken into segments, partially visible, and
with a small angular distortion. Actually, a human clusters the visible line
segments, such that with a certain confidence he or she claims they belong to
the same line. This confidence is based on syntactic information, i.e. ”most
lines are straight” and a priori semantic information ”we deal with power
lines”. The later aspect is a focus for model driven image analysis.

In the rest of this chapter we show, by means of the case study, that
an IDBMS simplifies experimentation with the different image analysis al-
gorithms and it takes less time to implement them. However, it is not our
intention to solve the line clustering problem at large. Consequently, we
don’t explore all performance aspects, but focus on the translation of an
image analysis problem into a database problem.

5.1 The line clustering problem

Many computer vision and image processing applications involve the seem-
ingly simple problem of line detection. A clustering of segments into lines

5.1. THE LINE CLUSTERING PROBLEM 93

that faithfully represent the original image is a pre-requisite for many image
understanding algorithms.

Conversion of an image into a set of lines is a two-phase process. In
the first phase, the image is converted into an edge map using a segment
detection algorithm, such as [15]. The second phase deals with extracting
the straight lines from the edge map.

A major problem encountered in practice is the lack of accurateness
in the segment extraction algorithms [14, 39]. Segments may be broken,
rotated or translated from their actual position in the source image. These
short comings of the detection/extraction algorithms show up more when the
original image contains different line styles, such as dashed and dotted lines,
or the image is cluttered with lines. Some segment extraction algorithms
may be better in handling rotations, others in handling width displacements.
Since edge detection and segment extraction are long standing topics in
computer vision it is unlikely that error free algorithms will be found shortly.
The result is that image analysis starts with a large collection of segments
that barely resemble the lines in the original image.

The way out of this dilemma is to focus on segment clustering algorithms
to derive approximately correct lines. By developing clustering algorithms
with a few controlling parameters it becomes possible to automate line de-
tection up to a point that human intervention is reduced to a minimum. The
proper parameter settings can be obtained by an expert user in an inter-
active application, which shows the clustering results for various parameter
settings.

Figure 5.1: Example Image with Line Segments

For practical purposes [40, 76, 64] assume an image with a sparse number
of lines, e.g. contours of a single sharp object. The example image, Figure
5.1, is taken from [64] which deals with powerline maps.

94 CHAPTER 5. IMAGE ANALYSIS: A CASE STUDY

5.1.1 Clustering Hierarchy

The line clustering problem can be redefined as clustering the segments ob-
tained from the extraction algorithm to form lines closely resembling the
original line in the image. The predominant way to solve this is by con-
structing a clustering hierarchy, which groups of segments are more likely to
belong to the same original line.

S1

S6

S5S4

S2 S3

3217643

3

4
2

1 7

6

5

Figure 5.2: Example Clustering Hierarchy

See Figure 5.1.1 for a sample segment set taken from a utility map and
the corresponding cluster hierarchy. In such a hierarchy each node represents
a hypothetical line sl, which best fits the underlying segment set. The
leaves of the hierarchy contain the initial segments. Each node combines
two segment sets into Sl. Note that sl may, but need not collide with a
detected edge.

5.1.2 Clustering Factors

The error classes caused by the detection phase are: orthogonal distance
d(sl, si), rotational displacement θsl − θsi , and difference in line width be-
tween a segment and the hypothetical line. For dashed lines we include the
factor coverage, i.e. coverage(sl, {si}), measured as the sum of the segment
lengths projected on the hypothetical line sl, as the ratio to its total length.

Figure 5.3: Example Rotational Error

The clustering factor orthogonal distance d(sl, si) specifies that segments
far apart are less likely to belong to the same original line. The same holds
for segments with a large angular displacement. This factor depends on

5.1. THE LINE CLUSTERING PROBLEM 95

the length of the line segments, since small segments are subject to larger
discretisation errors than long segments. Figure 5.1.2 clearly shows the error
caused by a single pixel shift. A detector cannot separate a point from a
small line.

The width difference factor models that segments of a single original line
cannot differ too much in width. The coverage ratio needed to detect dashed
lines states that the more of the hypothetical line is covered by the segments
the higher the support for that hypothetical line is.

5.1.3 Clustering Function

Segment sets {si} are constructed using a cluster function M({si}), which
produces a likelihood value in the range [0..1] for a set of segments supporting
a single hypothetical line sl. The hypothetical line sl for a set of segments
{si} is obtained through a least square fitting algorithm. From [64] we
obtained the following cluster function:

M({s0, s1, . . . , sn}) = n

√
λ(sl, s0) ∗ λ(sl, s1) ∗ . . . ∗ λ(sl, sn) ∗ L(sl, {si})

lsc
(5.1)

Where the support function λ(sl, si) is defined as:

λ(sl, si) = Gσal(si)
(θsl − θsi) ∗Gσo(d(sl, si)) (5.2)

And where Gσ(x) is defined as the Gaussian distribution:

Gσ(x) =
1√
πσ2

e−(x/σ)2
(5.3)

The standard deviation of the rotational displacement θ of sl and si is
controlled by σal(si) . The permissible deviation is larger for shorter seg-
ments. In Equation 5.2 d(sl, si) is the orthogonal distance between sl and
si, measured as the shortest distance between the center of si and the line
sl. The standard deviation in orthogonal distance is controlled by σo.

The last part of Equation 5.1 controls the gap size between segments.
L(sl, {si}) is the sum of the lengths of all segments projected onto the line sl
and lsc is the total length of covered segment of the line sl. Larger coverage
indicates a higher chance that these segments belong to the same original.
These functions are used to calculate clustering values to build a hierarchy
of segment sets.

The hierarchy is build bottom up in an iterative process with the initial
tree containing the individual segments as leaves. Using a hill-climber algo-
rithm the tree is constructed by repeatedly combining two nodes. Once a
clustering set is formed it cannot be split again.

96 CHAPTER 5. IMAGE ANALYSIS: A CASE STUDY

Two Segment sets are clustered if there is no other combination with a
higher support value. In particular, at each step, node pairs with a maxi-
mum support value are located and merged into a new node. The support
function value is always based on the original segments, because even the
best fitting algorithm for finding a hypothetical line has inaccuracies. Merg-
ing inaccurate hypothetical lines could result in lines that do not represent
any of the lines in the original image. For example a circle broken into
segments could mistakenly be clustered into a single straight line.

The clustering process continues until all nodes have been merged into
sets and the clustering tree is completed by a single root. The hierarchy
is then a complete clustering of all the segments into a single hypothetical
line. From the clustering hierarchy, it becomes possible to select a clustering
according to a user controlled threshold value. This threshold could be
found using a process of visual feedback, i.e. an edgemap overlayed with the
clustering for a given threshold δ. Clustering of segment sets which are too
far apart or have very different orientations are ignored.

The algorithms proposed in [76, 64] calculates the likelihood value for
each segment subset. This leads to a combinatorial explosion, because of the
large number of segments involved. The algorithm does not scale. Their al-
gorithmic complexity is cubic in the number of segments, (n), considered for
clustering O(n3). Furthermore, the clustering function is expensive, because
it recalculates the hypothetical line from the segment set considered.

5.2 Database Optimization

The solution described in the previous section involves user controllable
parameters (σa(l(s)), σo, δ), and are based on complex calculations. Moreover,
the clustering algorithm uses a single hypothetical line at a time processing.
Although it gets the job done, it is far from optimal.

Conversion of this approach to a database set-oriented approach seems
beneficial. The following optimizations strategies would be applied by a
database programmer confronted with the task:

• Domain independent methods

– Use spatial indices, to reduce the O(n2) problem with appropriate
filters.

– Factoring out expensive calculation, to reduce the CPU cost.

• Domain specific filtering

– Use angular distortion to start the search for lines under the
assumption that their angular distance is always limited.

– Use line length to start with long lines, these are considered less
erroneous.

5.2. DATABASE OPTIMIZATION 97

• Domain specific algorithms

– Use a set oriented approach gives a better handle to reduce re-
peated calculations.

– Divide & conquer using repetitive splitting into disjoint sets until
the optimum is found.

Using the same algorithm we could reduce the calculation of the ex-
pensive clustering function by careful selection of candidates for clustering.
We can use domain independent indices to speed up this search, when a
maximum segment distance is known. For example searching for candidate
clustering pairs could be done using a spatial index structure, such as the
R-tree [52]. We could also factor out the constant factors in the clustering
function, which cannot be done transparently by a C-compiler.

5.2.1 Mathematical Optimization

Solutions as described by [40, 76, 64] use functions to calculate a cluster-
ing value for a set of segments, i.e. they all use similarity measures. The
clustering function combines the clustering factors into a single value that
quantifies the support for the hypothetical straight line. A better approach
is in the first step to use these factors to filter out approximately 90 % of
non-interesting cases, and then solve the remainder using these expensive
measures.

The clustering algorithm discussed uses a clustering hierarchy, but spe-
cific applications will use a threshold value to select only a subset of this
hierarchy, i.e. all clusterings {si} where M({si}) exceeds the threshold δ.
Having this threshold we could reverse engineer the clustering function and
find information to reduce our search space.

Two optimization methods could be applied: search optimization and
filtering. The first, improves searching for candidate clusterings. For exam-
ple a search for candidates based on spatial locality. In the naive algorithm
the candidates considered are all segment set combinations. A filtering op-
timization would significantly reduce the set of candidate clusterings using
a cheap operation as follows. Knowing two segments can never be clustered
when their orientations differ too much, we could cheaply filter these out
using a selection on their orientation difference. To see how we apply these
optimizations, take a closer look at the clustering function 5.1.

Consider Equation 5.1 and assume n − 1 segments perfectly fit the hy-
pothetical line sl. This together with threshold δ leads to Equation 5.4.

n

√
λ(sl, sn) ∗ L(sl, {si})

lsc
≥ δ (5.4)

98 CHAPTER 5. IMAGE ANALYSIS: A CASE STUDY

When only considering the angular displacement, i.e. assume coverage
is perfect and orthogonal displacement is 0, leaves Equation 5.5. Only con-
sidering the orthogonal displacement gives Equation 5.6.

n

√√√√√ 1√
πσ2

al(sn)

∗ e
−(θl−θn)2

σal(sn)
2

≥ δ ⇒ θl − θn ≤
√
−log(δn ∗

√
πσ2

al(sn)
) ∗ σal(sn)

(5.5)

n

√
1√
πσ2

o

∗ e−
d(sl,sn)2

σo2 ≥ δ ⇒ d(sl, sn) ≤
√
−log(δn ∗

√
πσ2

o) ∗ σo (5.6)

Assuming no rotational and orthogonal displacement leads to Equation
5.7. The maximum gap between two segment sets, S1 and S2, can be ob-
tained when both the sets are perfectly aligned, then L(sl, {si}) is the sum
of all segment lengths and lsc is the sum of all segment lengths plus the gap
size.

This gives an upper bound on the distance between to perfectly aligned
segments, i.e. a maximum gap size.

L(sl, {si})
lsc

≥ δ ⇒ gap ≤ 1− δ
δ
∗ (L(S1) + L(S2)) (5.7)

To allow for candidate search based on segment distance we need to
combine this with the maximum rotational displacement and maximum or-
thogonal distance because these factors could influence the distance between
segments. There are three extremes to consider when searching the maxi-
mum segment distance, maximum gap size, maximum orthogonal distance
and maximum rotational displacement. The maximum segment distance is
the maximum of these three extremes. See Figure 5.2.1 for these extremes.
The gap size and orthogonal distance can be calculated directly.

a) b) c)

Figure 5.4: (a) max. gap size (b) max. orthogonal distance (c) max.
rotational displacement

The angle θ between the hypothetical line sl and the segment sn depends
on the segment distance, d(sl, sn). This leads to Equation 5.8.

d(sl, sn) ≤
√
max gap2 + (sin(max angle) ∗ 1/2l(sn))2 (5.8)

5.3. A HYBRID SOLUTION 99

5.2.2 Split based algorithm

The problem of the clustering algorithms discussed so far is their complexity.
For each level of the clustering hierarchy n2 combinations are checked.

One way to reduce the possible combinations is to look at the data
characteristics at hand. For example Figure 5.2.2 shows the segments length
and orientation of an A4 sized utility map. This figure clearly shows that
the large segments can be easily split into two groups around the peaks, 60
and 175 degrees. This could give two (disjoint) input sets for the optimized
clustering algorithm.

When we apply the same method for the segment width and polar r
coordinate we can identify groups of segments, which are strong candidates
for clustering. The splitting in groups should allow for overlapping groups,
since not all clustering factors have clear split positions.

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160 180

le
ng

th

angle

"angleslength"

Figure 5.5: Angle Length

5.3 A hybrid solution

In this section we illustrate integration of an existing algorithm for line clus-
tering with our extensible database management system Monet. The ap-
proach taken is to store the segments and clustering hierarchy in a database
table. The clustering algorithm extracts portions of this table for processing
and stores the results back into the database. This hybrid algorithm is di-
rectly based on [64], and illustrates use of a DBMS as a single object server.
It does not involve delegation of work.

5.3.1 Database representation

Integration of the line clustering algorithm and database technology requires
definition of a data model. The ideal situation, from an image processing

100 CHAPTER 5. IMAGE ANALYSIS: A CASE STUDY

point of view, is when the C++ structures in the application program are
understood and managed by the DBMS. This ideal is pursued by object-
oriented systems, such as persistent C++ and ODBMS.

Although this leads to a seamless interconnection, i.e. no impedance
mismatch, the state of the art DBMS optimization techniques have lim-
ited effect. The underlying reason is the iterative processing model still
adhered to in the application code, rather than a more declarative set-based
approach.

The solution is to use an extensible relation DBMS, which offers a declar-
ative query language which could be extended with new abstract data types,
commands and search accelerators. Examples are Postgres and Informix,
where the user can introduce abstract data types, whose representation is a
byte sequence. Conversion of application data structures into their database
equivalents then merely amounts to conversions into/from a byte sequence.

Another example is our extensible database system Monet[8], which sup-
ports user-defined abstract data types, called atoms, search accelerators,
and new commands. These are introduced using the Monet extension and
C/C++ programming language.

5.3.2 Data Model

Recall that in Monet the data is fully vertically decomposed into Binary
Association Tables (BATs), see Section 2.3. The data model for this appli-
cation domain consists of object identifiers (oids), segments, and sets of oids.
Oids are part of the standard data types of Monet, and thus all operations
needed are at hand. For the segments a new atom (abstract data type) was
needed, see Figure 5.6 for the module specification.

The input for the line clustering problem is a large set of line segments
obtained by scanning a grey-value image, using an edge detector followed
by a straight line extraction algorithm. This initial information is placed in
a BAT, which contains for each segment an object identifier and a segment
representation, see Figure 5.7 for a slice taken from this BAT.

The nodes of the hierarchy are also stored in a BAT. For each node again
an object identifier is used together with a set of oids. These sets of oids
represent the sets of segments. See Figure 5.3.2 for the required schema.

5.3.3 Clustering Algorithm

The subsequent step is to recode the algorithm [64] in MIL. Although this is
a straight forward mapping, it pays off to judiciously use indices to trim the
space explored. The cost incurred by combinatorial explosion encountered
in the naive line clustering algorithm can be reduced using a spatial filtering
technique. The rationale is that two segments are merge candidates if they
are spatially local.

5.3. A HYBRID SOLUTION 101

.MODULE segment;

.USE point;

.ATOM segment[32,8];

.TOSTR = segment_tostr;

.FROMSTR = segment_fromstr;
.NEQUAL = segment_comp;
.HASH = segment_hash;
.NULL = segment_null;

.END;

.COMMAND direction(segment) : dbl = segment_direction;
"get segment direction"

.COMMAND center(segment) : point = segment_center;
"get segment center point"

.COMMAND length(segment) : dbl = segment_length;
"get segment length"
.END segment;

Figure 5.6: The segment atomic type

The database structure to support location of spatial objects is the R-
tree, supported by one of the Monet extension modules [13]. An R-tree
clusters spatial local boxes together. We used this index on the bounding
boxes of the segments. These boxes were blown up, because the maximum
segment distance depends on the segment length. We used a R-tree join to
find overlapping bounding boxes and therefore find close by segments. We
can use this search accelerator without any further programming.

The original algorithm finds all clusterings for a given threshold δ. Based
on the threshold we find appropriate maxima for the clustering factors, see
Section 5.2.1. We calculate the maximum allowed distance between two
segment sets. A maximum orientation, width and gap size difference which
could still lead to a possible clustering. Based on these maxima we filter
out possible clusterings. These filters reduce a lot of expensive calculation
of the support function.

The hybrid algorithm follows the original hill-climbing process, which
will go through the following steps.

The possible clusterings are found using a R-tree overlap join, which
clusters all overlapping boxes and, thus, all spatially local segments. The
set found is further reduced using the angle and width heuristic filters. In

102 CHAPTER 5. IMAGE ANALYSIS: A CASE STUDY

#---------------------------#
BAT: tmp_28
(oid) (segment)
#---------------------------#
[4286, ((3844.000000,15573.000000),(3834.000000,15578.000000))]
[4287, ((3834.000000,15578.000000),(3829.000000,15572.000000))]
[4288, ((3829.000000,15572.000000),(3841.000000,15564.000000))]
[4289, ((3844.000000,15563.000000),(3852.000000,15560.000000))]
[4290, ((482.000000,15590.000000),(491.000000,15596.000000))]
[4291, ((491.000000,15596.000000),(478.000000,15602.000000))]
[4292, ((478.000000,15602.000000),(475.000000,15600.000000))]
[4293, ((475.000000,15600.000000),(476.000000,15590.000000))]
[4294, ((480.000000,15591.000000),(480.000000,15591.000000))]
[4295, ((480.000000,15589.000000),(480.000000,15589.000000))]
[4296, ((5823.000000,15651.000000),(5830.000000,15660.000000))]
[4297, ((5830.000000,15660.000000),(5822.000000,15660.000000))]
[4298, ((5824.000000,15647.000000),(5832.000000,15638.000000))]

Figure 5.7: Slice from the bat with segments

Bat head type tail type
segments oid segment
boxes oid box
segment sets oid oidset
nodes oid oid

Figure 5.8: Schema

other words, only the clusterings segments which are spatially local, and in
the same angle and width ranges, are the candidates considered.

In stage 3 all clustering values are calculated using the original cluster
function. This cluster function has been shown to be accurate, but it is also
rather expensive. It needs to find the hypothetical line with the maximum
support value. Finding the best hypothetical line through the set of segments
is done using a least square fitting algorithm. Because the support function
depends on the hypothetical line, which changes when new segments are
added, no reuse of the calculations can be done.

The support values are known, the clusterings with a maximum support
value for each of the containing clusters should be selected. Thereafter the
clustered segments and corresponding boxes are deleted from their BATs,
and the new sets are inserted in those BATs. For each new cluster a new
bounding box is calculated and inserted into the R-tree BAT. The bounding
box of the set of segments is that box containing all segments. This stepping
process will continue until nothing more can be clustered.

5.4. DATABASE SOLUTION 103

Algorithm hybrid

1. Spatial join, join all possible clusterings based on spatial locality

2. Heuristic selection, make a selection based on the angle heuristics.
Filter out pairs with very dissimilar orientation.

3. Support values, calculate the precise support values for the hypo-
thetical line.

4. Select maximums, select clusterings which have a maximum support
value

5. Update, update the BATs containing the nodes and boxes

Since segment clusters are represented by there segment identifiers, in-
terface functions should find the corresponding segments and convert those
into the data structures needed for the clustering functions. This means
there is a lot of conversion overhead. For the different parts of the calcu-
lation of the heuristics and support values a number of segment and node
characteristics are needed, like center point, angle, and mean angle. Also
these characteristics have to be recalculated each time the different functions
are called.

Using different selection criteria has proven to significantly reduce the
number of times the support value is calculated. As a consequence the
support function is no longer the dominant performance overhead. The
heuristics are now responsible for most of the execution time.

The use of the R-tree reduces the search space depending on the thresh-
old. Since the tree is build only once the cost is low compared to the costs
of the other functions.

5.4 Database Solution

In this section we demonstrate how a modern DBMS can be used to tackle
the line clustering problem. In Section 5.4.2 we show that algorithms based
on these primitives outperform the solutions given in the previous section.

5.4.1 Line cluster model

The input to the line clustering problem is a large set of line segments
obtained by scanning a grey-value image. The segments are represented as
atomic values in the database using the extensions introduced in Section 5.3.

The line clustering problem can be rephrased as finding (disjoint) sub-
sets that provide maximum support for a hypothetical line derived from the

104 CHAPTER 5. IMAGE ANALYSIS: A CASE STUDY

Operation functionality
[op](BAT[ht,t1] α, BAT[ht,t2] β) {at : ab ∈ α ∧ ac ∈ β ∧ t = op(b, c))}
{op}(BAT[ht,tt] α) {ab : β = {c : ac ∈ α} ∧ b = op(β)}

Table 5.1: Monet’s BAT Update Operations

segments in the subset. Alternatively, each segment is assigned to a sin-
gle subset and moving a segment from one cluster to another reduces the
clustering value for both.

The key operation of the line clustering algorithms is to analyze a seg-
ment set. That is, the basic object of manipulation is a set of segments. In
the previous algorithm in fact, the object was constructed as soon as trans-
fer occurred to the clustering algorithm. This is not necessary. Within the
database environment a line can be represented by a multi-valued function
from a group identifier to a set of segments. How these segments are glued
together to form a line is a separate issue.

A group can be reduced to a single value using the Reduce command.
Using the Map command a function can be applied to each group member
and a group parameter, see Table 5.4.1.

The algorithms are all linear in the size of their operands. They can also
be parallelized easily.

The easiest way to represent the initial segment set within Monet is to
introduce a mapping from gi → {sj}, where gi denotes a group identifier and
sj a segment identifier. This can be represented with a single Binary Asso-
ciation Table called groups and forms the first level clustering of segments.
For each group we calculate a bounding box gi → {bi}. The bounding boxes
are stored in the BAT named boxes. The remainder of the clustering runs
as follows:

Algorithm DBMS

Filtering on spatial locality Determine the candidate pairing of groups
using an overlap operator over their bounding boxes, i.e. C := over-
lap(boxes, boxes.reverse)

Create Groups Create a candidate group for each joined pair and store
it in a BAT, i.e. CG := C.mark().join(nsegs)

Filtering on max angle diff Determine the maximum angle difference
between the average and the segments angle for all groups, and select
those segments where the angle difference is less than than max angle diff,
i.e.
Cangle := {sum}(NG)
Cnr := sum(C.join(nnr))

5.4. DATABASE SOLUTION 105

Cmangle := [/](Cangle, Cnr)
Cmadiff := max([angle diff](Cangle, Cmangle))
CG := CG.semijoin(Cmadiff.select(0.0, max angle diff))

Calculate Hypothetical line Calculate interpolated straight line through
the center points, First get center of all line segments in the candidate
group, from this calculate the center point for the hypothetical line,
a second point is calculated using interpolation, this point is used to
find the lines orientation i.e. CCenter := [center](CG)
NCenter := [/]({sum}(CCenter)),Cnr)
dx := [-]([x](CCenter),[x](NCenter))
CX := [*](dx,dx)
CY := [*](dx,[y](CCenter))
CXsum := {+}(CX)
CYsum := {+}(CY)
Angle := [atan2]([-](CXsum,[x](NCenter)),[-](CYsum,[y](NCenter)))
Line := [new line](NCenter,Angle)

Calculate support values Calculate the product of the width, rota-
tional, and orthogonal distance heuristics

Select new clusters Select groups with maximum support values for both
containing clusters

Update retained information Delete clustered groups and insert the
new groups

The result of the distance join is used to construct groups of segments.
This again uses the search optimization based on spatial locality. These
candidate groups are further reduced using filters on orientation and segment
width. The operations needed for the calculation of the hypothetical lines
are done in a setwise fashion, which gives us the possibility to reuse the
intermediate results, such as the sum of the segment centers and the mean
orientation. The calculations needed for the filters can be reused during
the calculation of the support values. With these support values the best
clusterings could be selected. At the last step we have to update the retained
information, such as bounded boxes and mean orientation.

We can reuse intermediate results because we changed from a single
segment at a time approach to a more database approach of set at a time
bulk operations. There are no extra implementation efforts involved for this
set-at-a-time approach, because the primitives needed are already supported
by the database kernel.

5.4.2 Experiments and Results

Extensive experiments were performed to compare both effectiveness and
efficiency of the algorithms. The input for those experiments were segment

106 CHAPTER 5. IMAGE ANALYSIS: A CASE STUDY

sets obtained from real-life utility maps. Following [64] we used the standard
deviation σo and σa 1.5 and 0.18 respectively.

segments time(s) time(s)
sequential DBMS

300 23 2.3
600 76 2.9
1200 298 4.7
1600 454 5.4
2000 660 6.9
2736 1330 8.7
4000 2749 15
5472 5280 93

Table 5.2: Results for the sequential and DBMS algorithms

The first experiments show the efficiency of the database approach against
an algorithm used by [64] in image analysis. It enables comparison of the
traditional C++ based implementation with the DBMS algorithm. The set
of segments S is extracted from a single utility map. A family, of sets F is
constructed, such that the elements in F form a subset lattice, i.e. ∀fi ∈ F
∃fj ∈ F : fi ⊂ fj The experiment was done with a fixed threshold δ of 0.5.
The result are shown in Table 5.2.

As can be seen form the first experiment the DBMS set at a time algo-
rithm is an order of magnitude faster than the sequential algorithm. This
result can be attributed to effectiveness of the spatial index.

The second set of experiments with the hybrid and DBMS algorithms
was focussed on the efficiency of these algorithms. Different input sets were
taken. The sets were extracted from different utility maps each with its
own segment density. Figures 5.4.2, 5.4.2 and 5.4.2 show the histograms of
the segment orientation. The experiment was done with various thresholds
to evaluate the performance degradation under larger clustering hierarchies.
Table 5.3 shows the results.

The set at a time algorithm out performs the Hybrid algorithm on large
data sets, because then it profits from the information retained. With small
sets recalculation is less expensive.

All the experiments were done on a Sun SPARC-X running the Solaris
operating system and using an early Monet V3 version.

5.5 Conclusion

It has been shown that an extensible DBMS can be used to tackle the
line-clustering problem. The overhead of the conversion between database

5.5. CONCLUSION 107

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180

fr
eq

ue
nc

y

�

angle

"testinput.l.small.hist"

Figure 5.9: Histogram of the line segment angles, small image

structures / application structures is not a dominant factor. Moreover, there
exists a small algebraic extension to the DB core functionality, which enables
us to tackle the line clustering problem with database kernel support. The
performance is promising compared to the original solution written in C++.

segments threshold hybrid DBMS
67 0.25 1.1 1.4
67 0.4 0.9 1.2
67 0.75 0.5 0.8

2585 0.25 82 67
2585 0.4 56 36
2585 0.75 13 7
4362 0.25 77 45
4362 0.4 50 35
4362 0.75 9 4

Table 5.3: Result for the Hybrid and DBMS algorithms

108 CHAPTER 5. IMAGE ANALYSIS: A CASE STUDY

0

50

100

150

200

250

0 20 40 60 80 100 120 140 160 180

fr
eq

ue
nc

y

�

angle

"testinput.l.A4.hist"

Figure 5.10: Histogram of the line segment angles, A4 sized image

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140 160 180

fr
eq

ue
nc

y

�

angle

"testinput.l.A0.hist"

Figure 5.11: Histogram of the line segment angles, A0 sized image

Chapter 6

Fitness Join

6.1 Introduction

Join algorithms have a long tradition of interest in the database commu-
nity. By the late-70s the key algorithms were published [7]. Nested-loop,
sort-merge, and hash-based join algorithms have successively been explored
extensively to reduce their running time, including their parallel versions.
For an overview of these results see [73, 67]. In the object-oriented context
joins based on path traversals have been supported using join indices [111]
and pointer-based algorithms [33]. The results have been generalized into a
methodology for index structures[38, 23].

The common denominator of the join studies is that they largely deal
with equi-join conditions. Algorithms with more complex conditions, i.e.
theta-joins, have been barely scratched upon [34], let alone their embedding
in real-life applications.

Band-joins have been identified as a crucial asset for engineering appli-
cations, which require constraints on intervals around the join attribute. A
traditional sort-merge algorithm has been put forward as the best attack,
which brings the problem back into the realm of the now classical algorithms
[34].

More recently, Helmer and Moerkotte [97] have investigated the exten-
sion of main-memory join algorithms to deal with subset-join predicates.
From an application perspective, near match solutions are considered of
more importance than total match. Further progress has been reported for
optimizing cross products in [97] and universally quantified predicates in
[24].

These join activities are exemplary to better support novel applications
in a bottom-up fashion. Namely, the core relational algebra is extended
gradually with new features. However, starting from the way novel (non-
database) applications are being built, we have encountered the need for
fitness joins, which take the form of identifying join pairs optimally placed

109

110 CHAPTER 6. FITNESS JOIN

or ranked under a given metric condition. The naive solution for a fitness
join starts with producing the cross product followed by calculation of a
fitness value for each pair using a (sub-)query. Thereafter the best (worst)
from the perspective of one of its operands is (are) retained (for ranking).

The contributions of this chapter rest on introducing a reference ex-
ample to study the class of fitness joins, followed by chartering a road to
develop new algorithms and optimization schemes. The search space for
effective solutions is trimmed by presenting a concrete operator for fitness
joins, called the bounded theta join operator implemented in Monet [9]. The
scope for further optimization is illustrated using the mathematical prop-
erties as guidance for search heuristics. The bottom line being to extend
a query optimizer with a limited form of mathematical reasoning to derive
effective processing heuristics.

The remainder of this chapter is organized as follows. Section 6.2 pro-
vides a motivational example to study the fitness joins. Section 6.3 illustrates
how fitness joins can be handled in both a traditional and extensible data-
base setting. It also introduces the bounded-theta solution in Monet. Sec-
tion 6.4 charters the contours of mathematical query optimization. Section
6.5 summarizes a concrete implementation and its evaluation. We conclude
with challenges for subsequent research.

6.2 Motivation

In this section we introduce the class of joins considered with an artificial
example, the ballroom, followed by an indication of the application domains
in which they appear.

6.2.1 The Ballroom Example

Consider the database shown in Figure 6.1, which lists the participants of
a yearly ballroom contest. All persons are qualified dancers as illustrated
by their repertoire. In the training session for the contest it makes sense
to identify (or rank) potentially good teaching partners, i.e. those with
a good overlap of dance repertoire and partners of similar age. During
a dance session it is mandatory to quickly find a partner with the proper
dance repertoire on the dance floor when the music changes, because dancing
with an inexperienced person does not contribute to the training experience,
especially with the Tango. Positions of the dancers are also shown ([x,y]).

These questions can be rephrased to database queries as follows:
Q1: Find a partner of opposite gender and closest in age.
Q2: Find a partner with the best overlap in dance repertoire.
Q3: Find a male partner with a larger dance repertoire.
Q4: Find the closest Tango partner on the floor.
Q5: Rank the dance partners by experience.

6.2. MOTIVATION 111

Person
name gender age [x,y] repertoire experience

Tina female 21 [4,4] {rumba, samba, jive} 6

Brian male 24 [0,5]
{tango, foxtrot,
rumba, samba,
waltz, jive}

10

Mary female 25 [4,2] {tango, foxtrot, walt} 8
Susan female 28 [1,4] {foxtrot, waltz} 4
Edward male 30 [5,4] {rumba, foxtrot, jive} 8
Owen male 32 [5,2] {foxtrot} 1
Ruth female 33 [3,4] {rumba, jive} 3
Peter male 36 [5,1] {foxtrot, waltz, jive} 8

Figure 6.1: The Ballroom database

Let’s have a more detailed look at the requirements. Q1 can be answered
using the age difference over persons, i.e. f1(r, s) = abs(r.age− s.age), and
to retain those that minimize this function for all possible couples. Query
Q2 calls for comparison of set-based attributes, where we have to map dance
capabilities into a relevant information quantifier. Good partners are those
that have an identical dance repertoire. The best dance partner would be
one that maximizes the fitness function that compares the repertoire sets of
couples:

f2(r, s) =
|r.repertoire ∩ s.repertoire|
|r.repertoire ∪ s.repertoire|

Choosing a good teacher calls for inspection of the repertoire of the
potential partners. Their dance repertoire should exceed your own and the
best teacher is selected by repertoire count. This can be answered with the
following simple fitness function:

f3(r, s) =

{
|repertoire(s.name)| if r.repertoire ⊃ s.repertoire
0 otherwise

The teacher selection procedure can be further refined by keeping a tally
on the experience of each dance performed by a person. However, then
we run into a semantic problem as to precisely define by what is meant
with a good teacher. The predominant approach is to look at the experi-
ence histogram distributions for two repertoire sets and determine a metric
similarity. The best teacher is then someone with larger repertoire and a
maximal distance in the experience space. This, however, quickly breaks
down. An Euclidean metric would favor a super expert on a single dance
over someone who has adequate dance experience in multiple dances. The
way out of this dilemma is to consider alternative (standard) metrics or

112 CHAPTER 6. FITNESS JOIN

to call upon the user to give a fuzzy mathematical definition of the metric
intended.

Query Q4 combines a simple predicate with a spatial term using the Eu-
clidean distance in the ballroom and we retain those minimizing the fitness
function.

dist(r, s) =
√

(r.x− s.x)2 + (r.y − s.y)2

f4(r, s) =

dist(r, s) if ”tango” ∈ r.repertoire ∩ s.repertoire

∧ r.gender 6= s.gender
nil otherwise

Ranking the dance partners by experience (Q5) calls upon sorting the
possible couples using e.g. the function f5(r, s) = s.experience or fr(r, s) =
s.experience/|r.repetoire ∪ s.repetoire|. Sorting boils down to an iteration
over the candidates, finding the next best partner not ranked yet. Although
sorting can be implemented with repeated joins, it is certainly not the best
solution.

In practice, arbitration may also be required to assure a maximum num-
ber of couples on the dance floor, i.e. minimizing the total dissatisfaction.
This aspect is not dealt with in this thesis.

6.2.2 Fitness Joins

The ballroom examples leads to the class of fitness joins. The basis is formed
by two sets of objects R and S organized into a bi-partite graph. This graph
is obtained by taking the cross-product over R and S retaining pairs that
satisfy a priori selection criteria. Each edge carries a value obtained from
evaluation of a fitness function. From this enriched graph we retain all edges
that minimize (maximize) the edge weight from the perspective of the first
operand.

For example, the figures below represents the bi-partite graphs and fit-
ness join result for the dancers under fitness functions for f1, f2 and f4,
respectively. It illustrates that persons may be assigned several candidates
and that (in principle) the function is not symmetric.

The functions are built from the standard repertoire of mathematical
functions in a DBMS. Furthermore, we have encountered the need to also
describe discontinuous and constrained functions, e.g.

f(r, s) =

Expr1 if Cond1

Exprn−1 if Condn−1

Exprn otherwise

The function lines being interpreted in sequential order until a condition
holds. For example, in case the ballroom lacks experienced dancers of op-
posite gender, we may relax the partner choice. This fuzzy function could
be described as:

6.2. MOTIVATION 113

Query Q4

Ruth

Susan

Mary

TinaBrian

Edward

Owen

PeterRuth

Susan

Mary

TinaBrian

Edward
0.33

0.5

0.33

Owen

Peter 1

1
5

3
Peter Ruth

Susan

1

Owen

Edward Mary

2

TinaBrian

1

Query Q1 Query Q2

Figure 6.2: Query Fitness Graphs

f(x, y) =

1 if x.gender 6= y.gender

∧ x.repertoire ∩ y.repertoire 6= ∅
0.7 if x.repertoire ∩ y.repertoire 6= ∅
0.1 otherwise

Care should be taken on the definition of f . Besides being type correct
we ignore all candidate pairs where either f(r, s) or f(r, t) is undecided or
evaluates to nil. In general, this function can not be mimicked with an SQL
case statement and the user is forced to create a query batch to simulate
the behavior intended.

In the context of an extended relational model the fitness join can now
be defined as follows:
Definition Let R and S be two (object) relations. Then the minimal fitness
join �f over R and S under function f is defined by:

R� f S = {(r, s)|r ∈ R, r 6= s ∈ S ∀t 6= r ∈ S f(r, s) ≤ f(r, t)}

This definition combines tuples that minimize the fitness function f , it
identifies (local) minima in the function space from R. If both arguments
to a fitness join are one and the same table then the definition assures that
we do not retain the identity pairs as being most fit. Likewise we can pair
objects to maximize the fitness function.

114 CHAPTER 6. FITNESS JOIN

Definition Let R and S be two (object) relations. Then the maximal fitness
join �f over R and S under function f is defined as follows:

R� f S = {(r, s)|r ∈ R, r 6= s ∈ S ∀t 6= r ∈ S f(r, s) ≥ f(r, t)}

The consequence of our liberal definition of fitness functions is that, in
general, the fitness joins are not symmetric (R � f S 6= S � f R), nor
transitive ((R � f S) � f T 6= R � f (S � f T)). For a given point there
may exist several minima (maxima).

6.2.3 Application domains

The Ballroom problem has notably many incarnations in literature. We
have also encountered them in several applications developed for Monet [13,
79, 12]. They often appeared as heuristic functions written in a traditional
language (c,c++). A pattern emerged that called for better support to
analyze object pairs using a concise mathematical formulae, i.e. the fitness
function, as a necessary step in an iterative process to combine elements into
larger semantic units (objects). Good database support for the fitness join
alleviates these programs from using dedicated data structures and heuristic
that makes re-use of the code base near to impossible. To illustrate:

• In image databases there is a need to compare high-dimensional data
elements, such as color histograms under a distance metric[62]. A
high-dimensional data structure is called upon, which is known to
bring the dimensionality curse, while at the same time its semantic
interpretation falls in the trap indicated for Q3. A more precise fitness
function specification may provide clues to weed out bad pairs by
exploitation of the mathematical properties.

• In image processing there is a need to recognize complex-objects from
primitive objects, e.g. triangularizations, grid-based decompositions,
and more general image blobs. For example, lines should be recovered
from line segments recognized during poor scanning [79, 81, 77]. The
fitness function in this context binds segments that are angular similar,
not too far apart, and of similar thickness. The clustering algorithm
then attempts to maximize fitness to determine the candidates to pair
into larger units.

• In geographical information systems, there is need to better support
spatial joins and nearest neighbor search. To deal with it in an effective
way emphasis is placed on spatial index structures, such as illustrated
by [96, 42]. The fitness function in this context takes the form of an
Euclidean distance metric using (a posteriori) filtering of candidate
using attribute constraints.

6.3. FITNESS JOIN ALGORITHMS 115

• In engineering there is a need to deal with the imprecision of signals,
calling for relaxation of the traditional equi-join condition. The con-
cept of band-joins, e.g. r.age− d1 ≤ s.age ≤ r.age+ d2, is a step into
this direction [34], but also a special case of the fitness join.

• In data mining applications partial functions are used to classify infor-
mation into coarse grain groups before the mining algorithms are fired
to infer business models [54, 88] regrouping is needed. The groups
depend on a fitness function.

• In time series applications, the fitness function translates into selecting
a ’best-fit’ between time series fragments [30, 29].

Although this list is by no means exhaustive, it highlights the need to
consider specific support of the fitness join at the DBMS system level. Leav-
ing the problem with the application programmer to deal with it on a case
by case basis is from the database perspective not acceptable. We should
find and assess algorithms and techniques to better support this large com-
munity.

6.3 Fitness Join Algorithms

In this section we analyze the necessity to extend a database kernel with
a tailored implementation of the fitness joins. Such an extension should
be weighted against required orthogonality of its instruction set and the
opportunities to provide optimized versions otherwise not available or easily
detectable by the query optimizer.

6.3.1 SQL Framework

From a computational perspective, the fitness joins can be readily supported
by object-relational and O-O systems. However, due to the fitness join
definition we have to fully exploit the DBMS’s capabilities to group objects,
to express the complex mathematical function (through a stored procedure),
and to select specific elements from each group considered.

In the context of flat relational systems fitness joins lead to complex
batches of SQL requests. Although multiple query optimization schemes
may reduce the overhead incurred to some extent, the state-of-the-art in
this field does not provide generic solutions in the near future.

To illustrate, in a relational system we can simulate the fitness join Q1

using the SQL framework below. Its proper evaluation requires a nested
query and exploits SQL’s iterative semantics. Such queries are known to
be notoriously difficult to optimize[1]. At best the optimizer can extract
common sub-expressions or (erroneously) flatten it to a double cross-product
expression.

116 CHAPTER 6. FITNESS JOIN

select r.name, s.name
from Person r, Person s
where r.gender <> s.gender
and abs(r.age-s.age) ≤ (select abs(r.age-t.age) from Person t

where s.name <> t.name
and r.gender <> t.gender)

Queries Q2 and Q3 are further complicated by a metric over set-valued at-
tributes. Resolving this query in a flat relational framework is cumbersome.
For an object-based framework with set operators it can be solved using
a query to derive the table temp(rname,sname,fitness). Subsequently,
a simply aggregate query can extract the best partner. Traditional query
optimizers have a hard time to optimize the cross-products and aggregates
[94].
Query Q4 uses the Euclidean distance metric, which is ideally supported by
a Data Cartridge or Datablade for geographical information systems. The
resulting basic SQL framework is shown below. Again not much can be done
to improve response time. An R-tree index helps to solve point, region, and
spatial joins, but it can not directly be used by a query optimizer to solve
this fitness equation. The optimizer would have to detect that there is a
better alternative for calling the two distance functions in the first place.

select r.name, s.name
from Person r, Person s
where r.gender <> s.gender
and distance(r.age,s.age) ≤ (select distance(r.age,t.age)

from Person t
where t.name <> s.name

and r.gender= t.gender)
Note that this query depends on explicit naming of the distance function.
Replacing it with the underlying definition would seriously jeopardize per-
formance, because a query optimizer would not recognize easily the benefits
of an R-tree. Likewise, the user could solve query Q4 using a built-in func-
tion to access a nearest neighbor for any given point in the space covered.
This solution works if, a priori, we split the Person into two tables, one for
each gender, and to built a R-tree accelerator for fast access on locality.
Thereafter, we can solve Q4 with the following SQL query:

select r.name, nearest neighbor(Females, r.x,r.y)
from Males r

A query optimizer will typically generate a scan over Males and call the
function for each instance. It will (normally) not consider building a search
accelerator on Males first, followed by an index specific nearest neighbor
algorithm, e.g. traversing the R-tree of both operands in parallel.

6.3. FITNESS JOIN ALGORITHMS 117

Person name
oid name

0 Tina
1 Brian
2 Mary
3 Susan
4 Edward
5 Owen
6 Ruth
7 Peter
Person gender
oid name

0 female
1 male
2 female
3 female
4 male
5 male
6 female
7 male

Person age
oid age

0 21
1 24
2 25
3 28
4 30
5 32
6 33
7 36
Person [x,y]
oid point

0 [4,4]
1 [0,5]
2 [4,2]
3 [1,4]
4 [5,4]
5 [5,2]
6 [3,4]
7 [5,1]

Person dance
oid dance

0 rumba
0 samba
0 jive
1 foxtrot
1 rumba
1 samba
1 waltz
1 jive
2 tango
2 foxtrot
2 walt
3 foxtrot
3 waltz
4 rumba
4 foxtrot
4 jive
5 foxtrot
6 rumba
6 jive
7 foxtrot
7 waltz
7 jive

Person experience
oid experience

0 6
1 10
2 8
3 4
4 8
5 1
6 3
7 8

Figure 6.3: The Monet Ballroom database

6.3.2 Monet solutions

To improve upon the situation sketched, we study the opportunities of ex-
tending a relational algebra engine. The system being considered here is
Monet, a binary relational algebra engine, including powerful grouping prim-
itives and facilities to extend its behavior through dynamic loadable modules
[9, 12]. The Monet schema for the Ballroom database is shown in Figure
6.3.2.

The naive solution for the fitness joins R� fS is to generate an iterative
program in the Monet Interface Language (MIL) [9]1, that collects the min-
ima for each r ∈ R. It would be the default route taken by most relational
query optimizers.

In the remaining sections we focus on a more general scheme, using the
fitness function of Q1 as the focal point. Support for set-based operations

1 The papers can be accessed through http://www.cwi.nl/∼monet

118 CHAPTER 6. FITNESS JOIN

at the kernel level has been dealt with in the context of datamining support
[11]. A synopsis is beyond the scope of this chapter. Furthermore, the spatial
operators and their implementation in the context of Monet are reported in
[13].

Cross Table Solution

The next step is to identify the necessary extensions to the relational alge-
bra, such that performance gains can be obtained from bulk operations. In
this quest, we follow Monet’s approach to fully materialize results of binary
operators. This has proven to be effective in most situations, because it
trades storage space against memory cycles lost by MIL interpretation and
context switching [12, 10]. The key problems to be addressed for the fitness
joins are then to build a cross-table (sparse matrix) of the candidate pairs,
calculate the fitness value per element, and retain the minima per row (R)
order.

The first step is to extend the algebra with the notion of cross table
together with primitives to query it. In Monet the cross table could be rep-
resented by two binary tables Rmap : idx → oid and Smap : idx → oid
where their idx constitutes an index into the 2-dimensional space spanned
by |R| × |S|. The oids can be used to access the attributes of R and S
tuples, respectively. These tables are produced with a tagging operator,
R.tag(X,Y, Z), which assigns the index value to each element in R × S
using a conventional array-layout algorithm as shown in Figure6.4. The
tag−operation can be implemented cheaply using a single scan over its
operand.

Subsequently, cross table specific operators can be introduced, such as
fetching elements using a idx, slicing a portion of the cross table for further
processing, transformation of the cross table, and other matrix-like opera-
tions. For solving the fitness problem we need cross-table aggregates such
as rowMin, rowMax,. . . to work on rows and columns. These are straight-
forward extensions of their regular implementations.

With the algebraic extensions in place, we can solve the fitness join query
Q1 in the Monet Intermediate Language (MIL) as follows.2

2 See for details on MIL [9] and http://www.cwi.nl/∼monet

6.3. FITNESS JOIN ALGORITHMS 119

proc tag (R,X,Y,Z) := {
var answer := new(int,int);
var i :=0;
var k :=0;
R@batloop(){
var j:=0;
i:= k;
while(j<X){
answer.insert(i,$h);
j:= j+1; i:= i+Y;

}
k:= k+Z;

}
return answer;

}

Figure 6.4: Monet Tagging Operation

R� f S = {(r, s)|r ∈ R, s ∈ S ∀t ∈ S f(r, s) ≤ f(r, t)}
0 R := gender.select(“male”) # R:oid → str
1 S := gender.select(“female”) # S: oid → str
2 Rmap := R.tag(count(S),1,count(S)) # Rmap:idx → oid
3 Smap := S.tag(count(R),count(R),1) # Smap:idx → oid
4 Rage := Rmap.join(age) # Rage:idx → int
5 Sage := Smap.join(age) # Sage:idx → int
6 delta := [abs](Rage[-]Sage) # delta: idx → int
7 best := delta.minRow(count(S)) # best: idx → int
8 pairs := best.duplicate() # pairs:idx → idx
9 v1 := Rmap.reverse.join(pairs) # v1:oid → idx
10 answer := v1.join(Smap) # answer:oid → oid
11 a1 := R.reverse.join(answer) # a1:name → oid
12 a2 := a1.join(S) # a2:name → name

This script uses the Monet core algebra, multi-cast, and cross-table group
operations. Lines 0,1 dissects the gender (binary) table into one for males
(R) and females (S). Lines 2,3 constructs the candidate pairs mapping both
tables into the cross-table space using the tag operation. Lines 4,5 associates
the age values with each cell.

The multi-cast expression [abs](Rage[−]Sage) in line 6 evaluates the age
subtraction against all elements Rage and Sage with corresponding keys
producing the table {Rage.idx,Rage.age − Sage.age}. Subsequently, the
abs() function is applied to all tuple tails, producing the table
{Rage.idx, abs(Rage.age− Sage.age)}.

The minimum value per row is retained in line 7 using the cross-table
enhancement. Line 8 replicates the key to prepare for the selection of couples

120 CHAPTER 6. FITNESS JOIN

oids in line 9 and 10. Finally, line 11 replaces the oid by the person’s name.
The storage required for this script to work is |R| + |S| + 3 ∗ |R| ∗ |S|

using eager garbage collection of intermediates. The processing cost is in
the order of 4 ∗ |R|+ 4 ∗ |S|+ 5 ∗ |R| ∗ |S| steps. Evidently still too expensive
to consider as the default for evaluation for large ballroom contests, because
this algorithm still uses complete cross-products. Fortunately, for a large
class of fitness functions a better solution exists.

Bounded Theta-Join Algorithm

Both the iterator and cross-table solutions ignored the mathematical prop-
erties of the fitness function. Yet, exploitation of these semantics may prove
valuable in reducing the processing cost even further. For example, recon-
sider query Q1, the minimum age difference, where the following equations
hold:

abs(r.age− s.age) ≤ abs(r.age− t.age)⇔

r.age ≤ s.age ≤ t.age
r.age ≥ s.age ≥ t.age
s.age ≤ r.age ≤ t.age

They illustrate that ordering on the age domain of s and t could be used
to reduce the number of candidates. Furthermore, a pair (r, s) such that
r.age ≤ s.age, can be determined with a theta-join. The algorithm could
be rephrased accordingly and it halves the space of candidates considered.
However, this is still too many, because the fitness join requires for each r
just one s; its closest neighbor under the fitness expression.

To tackle this problem, we have extended the relational algebra with
a bounded theta join operation, e.g. btj(R, S, θ, n) where θ is one of the
relational operators (<,>,≤,≥) and n is the bound on the number of results
retained per left operand value. An efficient implementation of the theta-
join is already available in the Monet engine. It uses an index on one of the
operands to speed up the search. If necessary, this index is created on the
fly. Looping through the second operand, it produces the qualifying pairs,
which are copied into the result table.

Its refinement for the bounded case n = 1 is relatively straightforward.
It merely has to check the result table for duplicate insertion on the r com-
ponent and to retain the minimum s encountered. The general case n > 1
requires slightly more work to retain the n−set of minimal values. The
easiest way is to also create a sorted access path on the join attribute of
S (if not already there). Then we can optimize the btj by merely doing a
index lookup followed by a constrained (n)-step walk along the index to find
the candidates of interest. Such tactical decisions are commonplace in the
Monet kernel and prove to be highly efficient [9].

Using the bounded theta-join the Monet script of can be augmented as
follows.

6.4. QUERY OPTIMIZATION SCHEMES 121

R� f S = {(r, s)|r ∈ R, s ∈ S ∀t ∈ S f(r, s) ≤ f(r, t)}
0 R := gender.select(“male”) # R:oid → str
1 S := gender.select(“female”) # S: oid → str
2 Rage := age.semijoin(R) # Rage:oid → int
3 Sage := age.semijoin(S) # Sage:oid → int
4 right := thetajoin(Rage,Sage,≤,1) # right : oid →oid
5 left := thetajoin(Rage,Sage,≥,1) # left : oid → oid
6 cand := union(right,left) # cand: oid → oid
7 Rmap := cand.mark() # Rmap: idx → oid
8 Smap := cand.reverse.mark() # Rmap: idx → oid
9 Rage := Rmap.join(Ra) # Rmap: idx → oid
10 Sage := cand.reverse.mark() # Rmap: idx → oid
11 delta := [abs](Rage[-]Sage) # delta: idx → int
12 best := delta.minRow(count(S)) # best: idx → int
13 pairs := best.duplicate() # pairs:idx → idx
14 v1 := Rmap.reverse.join(pairs) # v1:oid → idx
15 answer := v1.join(Smap) # answer:oid → oid
16 a1 := R.reverse.join(answer) # a1:name → oid
17 a2 := a1.join(S) # a2:name → name

Lines 0,1 again identifies the males and females and line 2,3 obtain their
age attribute. The left and right candidates are obtained with the bounded
theta join in lines 4 and 5. They are combined to form the candidates in
line 6. Line 7 and 8 construct the cross-table representation by introducing
the cell identifier using a builtin routine number(). The remainder of the
algorithm is identical to the previous version.

The prime effect of this preparatory step is that the storage cost is sig-
nificantly reduced. Instead of |R| ∗ |S| candidates there are only 2 ∗ |R|
candidates in the main part of the algorithm. The processing cost is re-
duced accordingly to 2 ∗ |R| ∗ 5 + 2 ∗ |R|.

6.4 Query Optimization Schemes

In this section we indicate the opportunities to exploit the fitness functions at
query optimization time and accelerator data structures to support complex
cases.

6.4.1 Mathematical Query Optimization

The fitness join expressions indicates a route for further exploration. For,
when we compose functional expression over the operator set {+,-,*,/,log,exp,
sqrt}, a single attribute, and constants, we maintain monoticity of the re-
sult. This means that the bounded-theta-join solution presented in Section
7 can readily be applied.

122 CHAPTER 6. FITNESS JOIN

The case considered for fitness function f1 illustrates how a query op-
timizer can deal with discontinuous single attribute functions. It should
break the underlying domains into pieces, such that within each piece the
bounded-theta-join becomes applicable. Actually the optimizer should pro-
duce the first derivative in each point and determine the domain ranges
where it can use the btj method. This analysis is relatively straightforward
for the operator set considered.

Beyond these cases, a symbolic analysis of the fitness function could
explore the following routes:

• Sandwich method. A fitness expression can be approximated using
bounding functions that may be easier to compute, i.e.

f̌(r, s) ≤ f(r, s) ≤ f̂(r, s)

• Transformation method. If the fitness expression can be subjected to
an affine transformation (rotation, translation) with clear boundaries,
we could solve the function in a fraction of the domain and use a
lookup table to speed up evaluation. For example,

f(r, s) = f(r + δ, s+ δ)

• Candidate method. If the operands involved ’identical objects’ with
respect to the attributes of concern in the fitness expression, it suffice
to use one in solving the fitness problem.

The sandwich method is of interest if the underlying domain deals with
sequence data. For example, in a stock exchange time series the band in
which the stock price function fluctuates may be determined with a single
scan over the underlying table. It provides a crude, but effective approxi-
mation of the function to filter candidates by looking at f̂(r, s) (or f̌(r, s))
first. It is even possible to break the sequence into bull and bear market
segments before fitness expressions are calculated.

The transformation method could be used in those cases where the un-
derlying object incurs repetition. For example, in a fractal encoding of
an image the fitness expression needs to be solved once for each fractal
component. Subsequent join results can be found by applying the fractal
transformation to the operands.

The candidate method calls for a projection over the attributes of interest
and to keep the identity of one record r (or s) to partake in the fitness test.
We then know that the result obtained holds for all other members in the
same group.

The price paid for such optimizations is to include a mathematics rea-
soning system as part of the query optimizer. For elementary analysis this
is not more difficult than finding common subexpressions. Finding appro-
priate sandwich functions could be encoded as static optimization rules for
the classes of operators considered.

6.5. EVALUATION 123

6.4.2 Data structures for fitness joins

Once we enter the realm of multi-attribute expressions, e.g. the distance
fitness (f4), or set-based expressions (f2) the bounded-theta-join solution
should be generalized to multiple dimensions. For example, the bounded-
theta-join with distance 1 over a spatial domain equates with the nearest
neighbor operation often deployed.

The set-based expressions can benefit from the partial order of the sub-
set relation to reduce the number of candidates. Searching for the sets with
maximum overlap, as defined by f2, can be answered using the po-tree in-
duced from this partial order. The bounded theta join can then use the order
to speed-up matching as follows. To find pair (r, s) maximizing f2(r, s) we
start from the set closest to the repertoire of r. This starting point can be
found in a single walk through the po-tree. A bounded number of sets with
maximum overlap could then be determined by traversing the po-tree from
this point in sub and super-set direction. Each newly found set should, if
the bound is not reached, also be used as a new start point for traversal.

6.5 Evaluation

To assess the impact of the techniques described, we set out for a first
experimental validation of the bounded-theta-join. For this purpose, we
have implemented the ballroom contest in Monet. This system provides
sufficient hooks to extend the algebraic engine with new operators and search
accelerators. The implementation involved coding the naive, cross-table,
and bounded-theta-join approach using a C-module. Moreover, we added a
module for the po-tree over sets.

6.5.1 Dance partners by age

To evaluate the performance results, we faked a large ballroom contest with
a party of trolls, dwarfs and elfs to obtain a sizeable collection of different
ages. The database was initialized with a equal number of males and females.
We experimented with subsets in the range of 8 to 9192 dance couples. The
dance couples are formed using query Q1.

This choice assumes that traditional optimization steps, such as reducing
the number of individual candidates as quickly as possible using attribute
based selection, has already been performed. The second optimization step
assumed, is to solve the fitness join for just one distinctive element in each
group. Therefore, we project the operands over the attributes mentioned in
the fitness join expression, keeping one person for the evaluation. After the
fitness join has been evaluated, the equivalent persons can be joined back
into the result to find for each male the group of females of the same minimal
age.

124 CHAPTER 6. FITNESS JOIN

The performance of the three algorithms for query Q1 is shown in Figure
6.5(a). The incremental memory requirements (Kb) of the algorithms are
shown in Figure 6.5(b).

1

10

100

1000

10000

100000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim
e

(m
s)

nr of couples

"iterator"
"crosstable"

"btj"

10000

100000

1e+06

1e+07

1e+08

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

m
em

or
y

(k
by

te
s)

nr of couples

"iterator"
"crosstable"

"btj"

(a) (b)

Figure 6.5: Execution Times and Memory Requirements.

The experiments confirmed the expected behavior. The iterative solution
is relatively fast for small dance parties (up to 64). Thereafter, the quadratic
complexity of the algorithm results in poor performance. The Cross table
solution performs even worse, because it consumes large amounts of memory,
but also its performance follows the space consumption. Above 2048 dance
couples the memory requirements even exceeded the available resources. The
bounded-theta-join stands out as a winner, despite the overhead incurred in
construction of an accelerator on the fly. The investment is quickly earned
back in improved response time. The bounded-theta-join only needs to
construct an accelerator when none of the two given tables is sorted or
already contains an index structure. If the accelerators are available up
front, the performance is even much better.

6.5.2 Dance partners by repertoire match

In a second dance contest problem couples were formed using a query Q2:
find the partner of opposite gender and with best overlap in dance repertoire.
Again the operands are trimmed using the rules applied above. In the next
step the search for the best overlapping dance repertoire is made. using

6.6. CONCLUSION 125

function f2 to compare partners abilities.
Query Q2 was solved using three algorithms again; iterator, cross table

and po-tree. All three use bit sets to represent the repertoire. Their per-
formance is shown in figure 6.6(a). The incremental memory requirements
(Kb) of the algorithms are shown in figure 6.6(b).

1

10

100

1000

10000

100000

1e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

tim
e

(m
s)

nr of couples

"iterator"
"crosstable"

"po-tree"

10000

100000

1e+06

1e+07

1e+08

1e+09

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

m
em

or
y

(k
by

te
s)

nr of couples

"iterator"
"crosstable"

"po-tree"

(a) (b)

Figure 6.6: Execution Times and Memory Requirements.

Again these experiments confirm the expected behavior. The iterator
solution is optimal only for very small dance parties. Even smaller than for
query Q1. This stems from the more expensive f2 for finding the set overlap.
The cross table suffers even more from memory consumption, because more
intermediate results are needed to find the set overlap. The po-tree is a clear
winner, especially for larger dance parties. The investments of building it on
the fly are quickly earned back. The tree size is only related to the number
of dances involved; it is unrelated to the number of dancers. Therefor the
cost of building the po-tree becomes even a relatively smaller investment for
larger dance parties. Even better performance can be obtained when the
po-tree is built up front.

6.6 Conclusion

In this chapter we have introduced the class of fitness joins, which appear
regularly as building blocks in advanced database applications. They ex-
tend the traditional equi-, theta- and set-joins by a mathematical complex
formula in the join condition combined with a selection from a (ranked)
group.

We have shown that this class can be handled efficiently for relatively
simple fitness functions using moderate extensions to the relational algebra.
A method to manipulate cross-tables or sparse matrices provides the hook to
represent results from sparsely populated cross-products. Furthermore, the
bounded theta-join appears a valuable addition to the standard repertoire of
algebraic operators and it can be implemented using traditional optimization

126 CHAPTER 6. FITNESS JOIN

techniques. It extends early work on theta-joins [34] by uncovering the
real handle to tackle the problem efficiently. Namely, judicious use of the
monoticity properties of compound mathematical functions combined with
a variation of the theta-join.

Further optimization by exploring the mathematical properties of the
fitness expressions have been indicated. It is an open research area, while
most interactions with a database system come from applications where
mathematical analysis is a integral activity. The optimizer framework of
Monet is extended along this line and we plan to isolate and include the
primitives for further experimentation in its algebra. Better support for
fitness-based ranking remains on our wish list as well.

Chapter 7

Metric Indexing

1

7.1 Introduction

An emerging class of database applications heavily relies on spatial informa-
tion, e.g. geographical and multi-media information systems. The majority
of queries involves exploration of the spatial information, such as finding
elements in a given region. Furthermore, join queries over a spatial domain
often boil down to calculation of a distance function to locate point pairs
within close vicinity of one-another. They are conventionally implemented
using a spatial index (like R-tree) to filter candidate pairs.

Another important field for spatial joins is Multi-Media. In these fields
the queries passed are not always exact but often fuzzy. Fuzzy queries need
different index structures for performance improvement.

Since these application areas are still very new the queries will change
rapidly. So reuse of previous intermediate results which showed to be very
profitable in traditional systems will only result in loss of storage. Because
of the low reuse possibility index structures should be generated on the fly.

In this chapter we introduce a cheap and fast index structure to speed up
such distance joins. In particular, we demonstrate that an index structure
based on the distance metric is both cheap to construct and competitive in
performance.

Because the index structure can be built very fast and its storage over-
head is minimal, it is it a good candidate for on the fly construction. and can
hidden behind Monet operations, as part of a query processing plan. Since
the index structure captures the metric information to answer distance joins
directly, it reduces the number of times the expensive distance function is
evaluated considerably.

1Metric Indexing is developed together with W. Quak

127

128 CHAPTER 7. METRIC INDEXING

The key property exploited is that distance joins involve a well-defined,
but expensive, (Euclidean) distance function. Moreover, these functions
satisfy the mathematical triangular inequality property, i.e. the distance
between two points is always smaller or equal than the distance between the
points considered and a third point. Based on the triangular inequality it is
possible to build an index structure to speed up several query classes, such
as:

• point-match, for each A find the points B positioned at the same
location (e.g. A.pos=B.pos).

• k-nearest neighbor, for each A find the k nearest elements B under
the distance function.

• δ-search, find all B points within delta δ range away from A.

• δ-join, find all A,B point pairs within delta δ range.

In this chapter we ignore the point-match and k-nearest neighbor queries,
because they are special cases of the δ-search. The point-match can be re-
phrased as a delta-join with δ = 0, while the k-nearest neighbor can be
implemented using a binary traversal over delta values until k values have
been obtained. The δ-search is part of the inner-loop of the δ-join algorithm.

The remainder of this chapter is organized as follows. In Section 7.2 we
review index structures that deal with spatial joins in high dimensions. Sec-
tion 7.3 explains the use of the triangular inequality in a multi-dimensional
space. In Section 7.4 the metric index data structure and algorithms are
explained. Section 7.5 provides a mathematical estimation of the effective-
ness of the new index structure. Section 7.6 reports on experimentations to
validate the approach taken. Finally, in section 7.7 we draw our conclusions
and pointers for future research.

7.2 Index Structures for Spatial Joins

Most previous work on searching in multi-dimensional spaces is concentrated
on low dimensional data-structures, such as R-tree [52, 4] and and K-D-
trees [5]. These structures can be extended to higher dimensions, but this
results in two problems. The performance degrades, because as the dimen-
sion increases the querying cost often increases exponentially; it is called the
dimensionality curse. Consequently, the index structures deployed become
less effective as a pre-filter for selections and join operations.

This curse also stems from the metric effects in higher dimensions, which
leads to a clustering of objects at the ‘edge’ of the n-dimensional space, while
all points theoretically become placed at ‘equal’ distance of any other point
in this space. This holds under the assumption of homogene distributed
objects.

7.3. TRIANGULAR INEQUALITY 129

The prime route explored in literature to tackle the former deals with
the scalability limitations of most data structures. Examples considered
here are the X-tree, SS-tree and TV-tree:

The X-tree [6] tackles the dimensionality problem by observing that the
performance degradation in the R-tree based index structures is mainly due
to the high overlap between the nodes in the R-tree itself. This overlap
causes an increased number of nodes to be visited when querying the R-
tree. The X-tree solves this problem by allowing nodes of the X-tree to
be bigger than one disk block (the so-called super nodes) if a split node
would generate a high overlap. This technique makes an X-tree behave like
an R-tree in low dimensions, while in higher dimensions the join behavior
converges to that of a nested loop.

Another data structure for indexing high-dimensional vectors is the SS-
tree [118]. The SS-tree is an R∗-tree based structure using bounding (hy-
per)balls instead of rectangles. In 2-dimensions bounding circles are more
appropriate for performing similarity queries. Furthermore, they store some
additional statistical data in the nodes to support various operations used
in image retrieval.

The TV-tree [69] reduces the size of internal nodes by projecting the
data in internal nodes to a lower dimension. By using different projections
in different parts of the tree, all parts of the original vectors are used. If
some dimensions of the input data are more important than others a big
speedup can be gained. This is done by first projecting the data to these
important dimensions. It is unclear how well the TV-tree performs when all
dimensions are equally important.

Despite the progress reported in reducing the storage/processing cost
in moving to higher dimensional indices, these data structures are focussed
on the spatial organization. We focus on point and region-based retrieval
operations. Our key operation, δ-joins, requires a relaxation of the spatial
joins supported by several systems. It behaves more like a theta-join within
a spatial context. The role of the index structures in this case are primarily
aimed at reducing the number of candidates for consideration.

7.3 Triangular Inequality

As mentioned before, distance functions play an important role in real life
applications, e.g. GIS, CAD/CAM, Image Retrieval and multi-media ap-
plications. For example in GIS and CAD/CAM applications require spatial
queries, like ”find me the closest restaurant to a given location” and ”find
objects that are so closely placed that they generate electro-static interfer-
ence”. Many content based text, image and multi-media applications use
similarity based queries, like ”find similar colored objects”. To illustrate,
the functions encountered in the areas considered are:

130 CHAPTER 7. METRIC INDEXING

1. The Great Circle Distance is used in GIS to calculate the ’as the crow
flies’ distance between two places in the world.

2. A distance function amongst customer profiles (time series) in the
datamining area.

3. The Weighted Euclidean Distance over a vector space:

d(V,W) = (V −W)TA(V −W) =
∑
i

∑
j

Ai,j(Vi −Wi)(Vj −Wj)

4. Histogram Intersection

d(V,W) = 1−
∑
imin(Vi,Wi)∑

i(Vi)

Most distance functions are expensive to calculate and, because they are
called repeatedly, they contribute considerably to the total querying cost.
Our index structure aims to reduce the number of calls to these functions
in a naive implementation of the δ-join. This is achieved by using the met-
ric properties. The key to the solution proposed relies on the triangular
inequality relationship.

The mathematical properties for a metric, |xy|, where x, y and z are
multi-dimensional vectors, are:

• Positivity |xy| ≥ 0 ∧ |xx| = 0

• Symmetry |xy| = |yx|

• Triangular inequality |xy| ≤ |xz|+ |zy|

It enables to set-up an index that is both effective (on low selectivities)
and fast to construct.

7.3.1 Using the Triangular Inequality

The naive implementation of the envisioned δ-join is a nested loop. For each
pair considered the distance should be calculated. Since this results in many
expensive calculations it becomes mandatory to reduce candidate pairs to re-
use results being calculated. This is achieved by taking a reference point (or
set of reference points) and to calculate the distances between the reference
point and each vector in a join operand first.

Now consider a query looking for all points within distance δ from a
query point q, i.e. all points p with |pq| < δ. The metric properties enables
reuse of distances calculated between p and reference point r.

Assume that for points in our space we know its distance to a reference
point r. Then the query |pq| < δ could use this information as follows. The

7.4. METRIC INDEX STRUCTURE 131

q
r

|rq|+|rq|−

δ

δ δ

Figure 7.1: Circles

triangular inequality provides us with |rq| ≤ |rp|+ |pq|. So we have an upper
bound |rq| ≤ |rp|+ δ. Since also |pq| ≤ |pr|+ |rq| holds, we also know that
|pr| − δ ≤ |rq| holds. Using the metric symmetry we can use |rp| directly,
else we could also store |pr|. Figure 7.1 shows the use of the triangular
inequality in the 2 dimensional case.

If the query point is already close to the reference point, we can remove
all possible points with large distance from r from consideration. They
typically fall behind the horizon of 2 ∗ δ. Alternatively, if the query point is
far away from the reference point we can remove all possible points which
are close to the reference point r.

7.4 Metric index structure

In this section we will explain how the metric index structure is built and
how it is used in the select and join algorithms.

7.4.1 The reference points

There are various ways to select a reference point: random, center of gravity,
or middle point. A randomly selected reference point would be the prime
choice considered when it is a priori known that the space is large. The
center of gravity would be of interest if the space contains several clusters.
Then each cluster leads to a reference point. Unfortunately, cluster detection
and, subsequently, the reference point is expensive to calculate. Instead we
use the heuristic to randomly select reference points.

Given a reference point, we calculate its distance to each point in the
table. The points are subsequently sorted by distance using a tree-like struc-
ture. This will speed-up searching later for elements at a given distance from
the reference point.

132 CHAPTER 7. METRIC INDEXING

7.4.2 The optimized distance select

Selection using the metric index follows the traditional route of pre-filtering;
the index is used to reduce the candidates to consider to solve the δ-select.
The following pseudo code routine explains how this can be done.

δ-select (ps, q, δ){
select p from

select p from ps
where |pr| − δ < |rq| < |pr|+ δ

where |pq| < δ
}

The inner select selects all points p form the point set ps where the
distance of the reference point r to the query point q is between |pr|− δ and
|pr|+ δ. This identifies candidates in a cylinder around the reference point.
It can be solved with a single lookup because we know the distance to r.
The outer select filters this set by checking for the actual distance between
p and q.

Similarly, we can use the metric index to speed-up the δ-join using the
generalized triangular inequality.

|pq| ≤ |pr0|+ |r0r1|+ . . .+ |rnq|

δ-join (ps, qs, δ){
select p, q from

select p, q from ps, qs
where ||prp| − |rprq| − δ| < |rqq|

< |prp|+ |rprq|+ δ
where |pq| < δ

}

The algorithm can be simplified when both tables use the same reference
point.

The use of multiple reference points merely leads to a few and parts
in the query. The following code shows the simplified version for a three
reference points query.

δ-join (ps, qs, δ){
select p, q from

select p, q from ps, qs
where ||pr0| − δ| < |r0q| < |pr0|+ δ
and ||pr1| − δ| < |r1q| < |pr1|+ δ

7.5. EFFECTIVENESS OF THE METRIC INDEX 133

and ||pr2| − δ| < |r2q| < |pr2|+ δ
where |pq| < δ

}

7.5 Effectiveness of the metric index

In this section we give an estimate on the expected hit ratio of the candidates
selected, i.e. ”Is the metric index a good filter?”. This estimate is only given
for the case where one reference point is chosen. Moreover, all estimates
are based on the (simplifying) assumption that the vectors are uniformly
distributed in space; this means that the size of a query result is linear with
the volume covered by the query. A formula for the volume of a hyperball
with dimension d and volume r, is denoted Vr,d. First, we give a formula for
balls with r = 1. This formula is defined recursively where the volume in
one dimension is expressed in volumes of the lower dimensions. The volumes
in dimensions 1 and 2 are given:

V1,1 = 2, V1,2 = π, V1,d =
2π
d
V1,d−2

In fact V1,1 is the length of the interval [−1, 1] and V1,2 is the area of the
circle with radius 1. The formula for balls with given r becomes:

Vr,d = rd V1,d

The next step is to estimate the size of the query result and the size of the
filter set of the range query with range δ around query point q with reference
point r. The two dimensional case of this query is depicted in Figure 7.1.
Due to the uniform distribution the size of the query result is equivalent to
the volume of a ball with radius δ around point q. The candidate points
(points which pass the filter step) are all the points in the (hyper)disc of all
points with distance between |rq| − δ and |rq|+ δ. Now the effectiveness of
the filter is the number of hits divided by the number of candidates.

#hits
#candidates

=
Vδ,d

V|rq|+δ,d − V|rq|−δ,d
=

δd

(|rq|+ δ)d − (|rq| − δ)d

In Figure 7.2 the effectiveness of a few selectivity values is shown. In this
Figure we keep the answer set constant by increasing δ for higher dimensions.
As can be seen, the filter effectiveness degrades for high dimensions. But
there are also some aspects to take into account to make life bearable in
practice.

134 CHAPTER 7. METRIC INDEXING

1e-05

0.0001

0.001

0.01

0.1

0 5 10 15 20 25 30

ef
fe

ct
iv

en
es

s

�

dimension

"sel0.1000"
"sel0.0100"
"sel0.0010"
"sel0.0001"

Figure 7.2: Effectiveness

• In this analysis only one reference point is taken into account. Im-
proved gain may come when more reference points are used, because
they break the cylinders into pieces. This analysis will be done exper-
imentally.

• The effectiveness of the filter is still good for small query results. A
situation likely to occur in large multi-dimensional applications.

• The uniform distribution assumption is not likely to hold in practice.
Clustered spaces will lead to more opportunities to filter out irrelevant
points.

To assess the impact of the choice of the reference point on the effec-
tiveness, we calculated the expected performance while varying the distance
|rq| between 0.0 and 0.1. In Figure 7.3 we plot the effectiveness for various
dimensions while fixing δ on 0.001.

Although the analysis in this section re-enforced the existence of the
dimensionality curse when dealing with distance joins in high-dimensional
spaces, it also indicates good behavior for low selectivity values and a small
δ. We conjuncture that it will further improve with sparsely (skewed) pop-
ulated in real-life applications.

One way to improve the filter effectiveness of the metric index is the use
multiple reference points. For two reference point, the filtering step becomes
a windowing query on points in IR2. See Figures 7.4 and 7.5. Adding more
reference points yields windowing queries in n-dimensional space. In fact
this leads to a filter step which converts an n-dimensional range query into

7.6. EXPERIMENTATION 135

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.08 0.085 0.09 0.095 0.1 0.105

ef
fe

ct
iv

en
es

s

�

distance

"dim=2"
"dim=4"
"dim=8"

"dim=16"
"dim=32"

Figure 7.3: Impact of location reference point

a windowing query of any dimension (depending on the number of reference
points).

d2+

d2−

d1−

d1+

q2

q1

δ

δ

δ

δ

Figure 7.4: Distance Query

d1− d1+

d2−

d2+

δ

δ

δ δ

Figure 7.5: Range Query

7.6 Experimentation

To assess the performance of the metric index in a real setting, we have
extended the Monet [13] system with a software module for δ-joins, δ-select,
and a metric index. Subsequently, we conducted experiments on data sets
generated using a standard pseudo-random number generator. All vector

136 CHAPTER 7. METRIC INDEXING

fields domains are [0..1).
The first experiment conducted was geared to get a handle on the cost

of the distance function. Therefore, we measured the execution time of
a naive implementation –with a simple loop– of the distance select. The
results are shown in Figure 7.6. It shows the execution time of a distance
select for databases sizes ranging from 10 to 100K with vectors of dimensions
2,4,8,16,32 and 64. All selects were done with an equal distance of 0.1. So
only very close points were retrieved.

The cost of this naive loop could be invested in construction of a metric
index. Once it is available, it can be used as a pre-filter. Figure 7.7 shows the
results against the same query using the index structure. The benefit from
the index is evident. For the low selectivity considered it leads to an overall
performance improvement. Since the investment in the index structure are
already recovered with 2 δ-selects.

For the δ-join a similar experiment was conducted. Figures 7.8 and 7.9
show the results of the naive nestedloop- and metric index based implemen-
tations. The cost of metric index construction is neglectable compared to
the gain. Again the benefit of the index is evident.

0

200

400

600

800

1000

1200

1400

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e(

m
s)

db size

2
4
8

16
32
64

Figure 7.6: Naive δ-search

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e(

m
s)

db size

2
4
8

16
32
64

Figure 7.7: δ-search using Metric
Index

To assess the degradation caused by increasing the result size we con-
ducted an experiment with fixed database size of 100K and with dimensions
2 to 64, but with increasing query selectivity ranging from 0.01% to 1.0%.
Figure 7.10 shows the execution times of the distance selects using the in-
dex structure. It clearly shows the reduced usability of the index structure
for larger answer sets. Only for low dimensions the index structure seems
effective. This stems from the uniform generated data.

To show that the index structure is a cheap alternative for spatial queries
in low dimensions we also compared our method with the R-tree data struc-
ture. Because our current version of the R-tree only works on two-dimension
vectors, this test is only run on two dimensional data. The results of this

7.6. EXPERIMENTATION 137

0

5000

10000

15000

20000

25000

30000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e(

m
s)

db size

2
4
8

16
32
64

Figure 7.8: Naive δ-join

0

100

200

300

400

500

600

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

tim
e(

m
s)

db size

2
4
8

16
32
64

Figure 7.9: δ-join using Metric In-
dex

0

200

400

600

800

1000

1200

1400

0.0001 0.001 0.01 0.1 1

tim
e(

m
s)

selectivity

2
4
8

16
32
64

Figure 7.10: increasing selectivity

experiment are show in Figures 7.11 and 7.12. They show the construction
and execution times of the δ-join for naive (nor), optimized (opt), optimized
with 2 reference points (opt2) and Rtree (rtree). From the figure we can
conclude that the metric index with two reference points is overall better
and that for relative low selectivity also the single reference point performs
well.

The last experiment was conducted to investigate the improved selectiv-
ity of the index structure when using multiple reference points. We exper-
imented with 1 up to 16 reference points. Three synthetic data sets were
used. We generated one using a uniform distribution, two using uniformly
distributed clusters, where the clusters internal distribution was zip-f or
gauss around the cluster center.

We measured the ratio between the number of points selected based on
the index only i.e. without the real distance post filter, and the actual result

138 CHAPTER 7. METRIC INDEXING

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

tim
e(

m
s)

Database size

rtree construction
metric construction

Figure 7.11: Construction Cost

0

10000

20000

30000

40000

50000

60000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

tim
e(

s)

�

selectivity

"nor"
"opt"

"opt2"
"rtree"

Figure 7.12: Two Dimensions

size. Figure 7.6 shows the results for the various data sets. It clearly shows
that multiple reference points in the clusters with zip-f internal distributions
will clearly not improve. This was to be expected since most of the points
will be close around the cluster centers. In case of the gauss internal distri-
bution multiple reference points improve the selectivity enormously. We see
a similar effect for the uniform data.

7.7 Conclusions

In this chapter we presented a cheap index structure to improve the query
performance of joins involving a distance metric. This index structure works
on any distance metric, as long as it obeys the triangular inequality. There
is no need for a full metric. We showed that the index structure is profitable
in higher dimensions for small selectivities.

Several areas require further investigation. First, our assumption of uni-
form distribution of points in the space leads to a worst-case behavior, es-
pecially in high dimensions. All points appear at the border of the space
and are equally spaced. We conjuncture that data obtained from real-life
applications are extremely sparse and that clustering of points (the focus of
the query) lead to good performance for acceptable ranges of selectivity.

Second, the implementation of the n-dimensional R-tree in Monet should
be finished to balance the results obtained so far. We conjuncture that the
effects of the dimensional curse for such data structures are worse than those
experienced in our metric index. Experiments in both directions are under
way.

7.7. CONCLUSIONS 139

1

10

100

1 10 100

se
le

ct
io

n

�

dim

"2D/gauss-4-64*64-0.100000"
"2D/uniform-4-64*64-0.100000"

"2D/zipf-4-64*64-0.100000"
"2D/gauss-4-8*64-0.100000"

"2D/uniform-4-8*64-0.100000"
"2D/zipf-4-8*64-0.100000"

"2D/gauss-4-64*8-0.100000"
"2D/uniform-4-64*8-0.100000"

"2D/zipf-4-64*8-0.100000"
"2D/gauss-4-8*8-0.100000"

"2D/uniform-4-8*8-0.100000"
"2D/zipf-4-8*8-0.100000"

Figure 7.13: 4 dimensional data

1

10

100

1000

1 10 100

se
le

ct
io

n

�

dim

"2D/gauss-8-64*64-0.100000"
"2D/uniform-8-64*64-0.100000"

"2D/zipf-8-64*64-0.100000"
"2D/gauss-8-8*64-0.100000"

"2D/uniform-8-8*64-0.100000"
"2D/zipf-8-8*64-0.100000"

"2D/gauss-8-64*8-0.100000"
"2D/uniform-8-64*8-0.100000"

"2D/zipf-8-64*8-0.100000"
"2D/gauss-8-8*8-0.100000"

"2D/uniform-8-8*8-0.100000"
"2D/zipf-8-8*8-0.100000"

Figure 7.14: 8 dimensional data

1

10

100

1000

1 10 100

se
le

ct
io

n

�

dim

"2D/gauss-16-64*64-0.100000"
"2D/uniform-16-64*64-0.100000"

"2D/zipf-16-64*64-0.100000"
"2D/gauss-16-8*64-0.100000"

"2D/uniform-16-8*64-0.100000"
"2D/zipf-16-8*64-0.100000"

"2D/gauss-16-64*8-0.100000"
"2D/uniform-16-64*8-0.100000"

"2D/zipf-16-64*8-0.100000"
"2D/gauss-16-8*8-0.100000"

"2D/uniform-16-8*8-0.100000"
"2D/zipf-16-8*8-0.100000"

Figure 7.15: 16 dimensional data

1

10

100

1000

1 10 100

se
le

ct
io

n

�

dim

"2D/gauss-32-64*64-0.100000"
"2D/uniform-32-64*64-0.100000"

"2D/zipf-32-64*64-0.100000"
"2D/gauss-32-8*64-0.100000"

"2D/uniform-32-8*64-0.100000"
"2D/zipf-32-8*64-0.100000"

"2D/gauss-32-64*8-0.100000"
"2D/uniform-32-64*8-0.100000"

"2D/zipf-32-64*8-0.100000"
"2D/gauss-32-8*8-0.100000"

"2D/uniform-32-8*8-0.100000"
"2D/zipf-32-8*8-0.100000"

Figure 7.16: 32 dimensional data

1

10

100

1000

1 10 100

se
le

ct
io

n

�

dim

"2D/gauss-64-64*64-0.100000"
"2D/uniform-64-64*64-0.100000"

"2D/zipf-64-64*64-0.100000"
"2D/gauss-64-8*64-0.100000"

"2D/uniform-64-8*64-0.100000"
"2D/zipf-64-8*64-0.100000"

"2D/gauss-64-64*8-0.100000"
"2D/uniform-64-64*8-0.100000"

"2D/zipf-64-64*8-0.100000"
"2D/gauss-64-8*8-0.100000"

"2D/uniform-64-8*8-0.100000"
"2D/zipf-64-8*8-0.100000"

Figure 7.17: 64 dimensional data

140 CHAPTER 7. METRIC INDEXING

Chapter 8

Summary

The objective of this thesis was to design an architecture for image database
systems. In this quest we explored many techniques effective in both image
retrieval and image analyses systems. The exploration lead to several refined
objectives.

The first refined objective is how to incorporate images and image opera-
tions in an extensible DBMS ? The extensible DBMS was Monet. In chapter
3 we showed a mapping of images to BATs, i.e. binary tables. We indicated
how a default implementation of the image algebra operations could be read-
ily achieved. This also proved the completeness of our approach. Using this
representation we showed many possible optimizations to be used by the
query optimizer to find better query plans.

It convinced us that pixel-set based image processing in a DBMS context
is a viable alternative against the image (C++) data structure approach,
the dominate approach taken in image analyses domain. It permits one to
focus on effectiveness and lets the query optimizer take care of the efficient
evaluation.

The second refinement of the global objective dealt with queries, i.e. how
should an image database system support image retrieval queries ?

In chapter 4 we introduced an algebraic framework to express queries
on images, pixels, regions, segments and objects. We showed the expressive
power of the Acoi algebra using a representative set of queries in the image
retrieval domain. The algebra allows for user-defined metric functions and
similarity functions, which can be used to join, select and sort regions. The
algebra is extensible with new region properties to accommodate end user
driven image analysis in a database context.

In Section 4.2.1 we showed our prototype image retrieval system and
explained the Multi-level signature image description. The multi-level sig-
nature approach shows that an image algebra should accommendate multiple
image descriptions and requires multiple index-structures.

In Section 4.3 we have introduced the necessary data structures and op-

141

142 CHAPTER 8. SUMMARY

erators to build an image database system aimed at supporting embedded
image querying. We have experimentally demonstrated that a bottom-up
index construction outperforms a top-down approach terms of storage re-
quirements and performance.

We have implemented the algebra within an extensible DBMS and devel-
oped a functional benchmark to assess its performance. In the near future
we expect further improvement using extensibility in search methods and
index structures to improve the performance of the algebra.

The third refinement dealt with image analysis, could an image database
system be used for image analyses tasks ?

In chapter 5 we showed that an image database could be used profitably
to support image analyses researchers. In a case study it has been shown
that an extensible DBMS can be efficiently used to tackle the line-clustering
problem. The overhead of the conversion between database structures and
application structures is not a dominant factor. Moreover, there exists a
small algebraic extension to the DB core functionality, which enables us to
tackle the line clustering problem. The performance is promising compared
to the original solution written in C++.

Although we proved the effectiveness of using a database system for
image analyses, the image community is far from taking up this route. The
main reason for this is a mentality issue. It is hard to change a researchers
approach which has been used for over a decade. In due time we expect that
the object-at-a-time approach, as dictated by the imperative languages like
C++, is replaced with a set-based approach.

The next refinement to the global objective dealt with similarity queries,
how to support similarity queries ?

In chapter 6 we have presented and analyzed the class of fitness joins,
which appear regularly as building blocks in advanced database applications.
They differ from the traditional equi-, theta- and set-joins by a mathematical
complex formula in the join condition combined with a selection from a
group.

We have shown that this class can be handled efficiently for relatively
simple fitness functions using moderate extensions to the algebra. In particu-
lar, the bounded theta-join appears a valuable addition to the standard reper-
toire and can be implemented using traditional optimization techniques. It
extends early work on theta-joins [34] by uncovering the real handle to tackle
the problem efficiently. Namely, judicious use of the monoticity properties of
compound mathematical functions combined with a variation of the theta-
join.

Further optimization, along the line of exploring the mathematical prop-
erties of the fitness expressions have been indicated. Its scope has been
barely scratched upon and we foresee much better support of advanced ap-
plications when their mathematical properties are properly accessed by an
optimizer. The optimizer framework of Monet is extended to cope with the

8.1. GENERAL RESEARCH DIRECTIONS 143

information presented and we plan to isolate and include the primitives for
further experimentation in its algebra.

Derived from the objective to deal with similarity queries was the objec-
tive to improve the performance of similarity queries. In chapter 8 we pre-
sented a cheap index structure to improve the query performance of joins
involving a distance metric. This index structure works on any distance
metric, as long as it obeys the triangular inequality. There is no need for
a full metric. We showed that the index structure is profitable in higher
dimensions for small selectivities.

8.1 General Research Directions

This thesis opens new research directions. The first direction, there is a need
for more investigation in Region-based Querying. We defined regions as the
basic building blocks for image descriptions. The regions describe small
parts of the image by associating region features. The query implications of
such regions needs more investigation.

The multiple-features associated with regions will form a single high
dimensional space. All problems associated with the high dimentionality
curse are valid. Therefore, all regions will be evenly distributed over this
space.

The predicate query model as available in current database manage-
ment systems proved inadequate for image retrieval queries. More advanced
query models such as Proximity-based Querying and Relevance feedback are
considered good alternatives and need more research.

Opposed to this we could question such a fuzzy query evaluation model.
Is the current accepted query model, i.e. image retrieval based on similarity,
the proper solution. Is such a Fuzzy model really needed? Maybe we could
guide the user to better understand the image descriptions used to describe
the image content. A better understanding of the image descriptions could
lead to precise image queries which could be handled using the predicate
query model.

The main problem of image retrieval systems is that the results obtained
through an index using similarity measures are often only understood by the
the image analyses experts. For naive users, it is often difficult to understand
why the answer to a query image showing e.g. a sunset should return nice
images about the African savanne. This is typically an artifact of non-precise
query formulation and weak indexing structure.

A way out of this problem is to give the user more insight in the features
used to solve the query against the image database. This insight is given by
specifying the query and showing the results in terms of the indexed image
features directly.

The usage of image databases by image analyzing researchers will give

144 CHAPTER 8. SUMMARY

the database researchers more input on there query behavior and require-
ments. This input could be used to improve the performance of image
analyzing applications. Once the image analyzing community has accepted
set based processing they can again focus on the image analyzing problems
and let the database take care of the performance issues.

Acknowledgements

First I like to thank both Arnold Smeulders and Martin Kersten for giv-
ing me the change to do this research. Martin, your enthousiasm helped
me through the difficult times of writing text. As you know I am easily
distracted, there is always something more interesting, but you kept me fo-
cused. Now this is finished we can hopefully both enjoy our hobby again
(hacking).

As Monet user I like to thank Peter for his bug fixes. Wilko, thanks for
the first tutorial on Monet usage and for the bug fixes in the gis modules.
Peter, Martin and Wilko thanks, I am proud to be part of the Monet team.

During my research I had lots of room mates, they made daily live a lot
more fun. Thanks Dennis, I now know what you were going through. Silvia
and Audrey, lucky me having all the girls in my room. The list goes on with
Benno, Marcos, Jeroen, Menzo, Stefan and Arjen.

Verder wil ik mijn vrienden en familie bedanken voor hun steun en be-
langstelling tijdens de afgelopen vier jaar.

Pa en Ma bedankt. Bedankt voor de steun die jullie mij gaven ondanks
dat het onderzoek voor jullie verre van begrijpelijk is. Jullie geloof in mij
heeft de doorslag geven om deze richting te kiezen. En nu kan ik eindelijk
jullie vraag, ”is je boekje al af”, positief beantwoorden.

Lilian, heel graag wil ik je bedanken voor jouw geduld en steun de
afgelopen jaren. Het leven met een ’computer-verslaafde’ zoals jij dat noemt,
is niet altijd even gemakelijk. Maar het liefst bedank ik je voor het afgelopen
jaar. Het was zwaar (vooral voor jou), maar wat zij we trots op onze ...!

145

146 CHAPTER 8. SUMMARY

Bibliography

[1] Rosenthal A. and U.S. Chakravarthy. Anatomy of a modular multiple
query optimizer. In Int. Conf. on Very Lage Databases (VLDB), pages
230–239, 1988.

[2] P. M. G. Apers, C. A. van den Berg, J. Flokstra, P. W. P. J. Grefen,
M. L. Kersten, and A. N. Wilschut. PRISMA/DB: A parallel main
memory relational DBMS. IEEE Trans. on Knowledge and Data Eng.,
4(6):541, December 1992.

[3] M. Arya, C W. Cody, Faloutsos, J. Richardson, and A. Toga. The
QBISM Medical Image Database. Multimedia Database Systems,
pages 79–97, 1996.

[4] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The r*-tree:
An efficient and robust access method for points and rectangles. In
Proceedings of the SIGMOD Conference, pages 322–331, 1990.

[5] J.L. Bentley. Multidimensional binary search trees used for associative
searching. Comm. ACM, 18:509–517, 1975.

[6] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The X-
tree: An index structure for high-dimensional data. In Proceedings of
the 22nd VLDB Conference, 1996.

[7] M.W. Blasgen and K.P Eswaran. On the evaluation of queries in
relational system. Research report, IBM, 1976.

[8] P. A. Boncz and M. L. Kersten. Monet: An impressionist sketch of
an advanced database system. In Proc. IEEE BIWIT workshop, San
Sebastian (Spain), july 1995.

[9] P. A. Boncz and M. L. Kersten. Mil primitives for querying a frag-
mented world. VLDB Journal 8(2), pages 101–119, 1999.

[10] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture
optimized for the new bottleneck: Memory access. In VLDB Confer-
ence, pages 54–65, 1999.

147

148 BIBLIOGRAPHY

[11] P.A. Boncz, T. Rühl, and F. Kwakkel. The drill down benchmark. In
Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages 628–632,
24–27 August 1998.

[12] P.A. Boncz, A. Wilschut, and M.L. Kersten. Flattening an object
algrebra to provide performance. In Conf. ICDE’98, 1998.

[13] Peter A. Boncz, Wilko Quak, and Martin L. Kersten. Monet and its
Geographic Extensions: a novel Approach to High Performance GIS
Processing. In EDBT proceedings, 1996.

[14] J.B. Burns. Extracting straight lines. IEEE PAMI 8(4), pages 425–
455, 1986.

[15] J. Canny. A computational approach to edge detection. IEEE PAMI
8(6), pages 679–698, 1986.

[16] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein, and J. Malik.
Blobworld: A system for region-based image indexing and retrieval. In
Third International Conference Visual Information and Information
Systems, pages 509–516, Amsterdam, the Netherlands, 1999.

[17] R. G. G. Cattell. ODMG-93: A standard for object-oriented DBMSs.
SIGMOD Record (ACM Special Interest Group on Management of
Data), 23(2):480–480, June 1994.

[18] N. S. Chang and K. S. Fu. Query-by pictorial example. In IEEE
transactions on Software Engineering 6(6), Nov 1980.

[19] S. K. Chang. Pictorial data-base systems. In IEEE Computer, Nov
1981.

[20] S. K. Chang, C. W. Yan, D. C. Dimitroff, and T. Arndt. An intelligent
image database system. In IEEE transactions on Software Engineering
14(5), May 1988.

[21] J. Chanussot and P. Lambert. Total ordering based on space fill-
ing curves for multi-valued morphology. In Proceedings of the Inter-
national Symposium on Mathematical Morphology (ISMM’98), pages
51–58. Kluwer Academic Publishers, Amsterdam, 1998.

[22] R. Chellappa and R. Bagdazian. Fourier Coding of Image Bound-
aries. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 6:102–105, 1984.

[23] Vassilis Christophides, Sophie Cluet, and Guido Moerkotte. Evaluat-
ing queries with generalized path expressions. In H. V. Jagadish and

BIBLIOGRAPHY 149

Inderpal Singh Mumick, editors, Proceedings of the 1996 ACM SIG-
MOD International Conference on Management of Data, Montreal,
Quebec, Canada, June 4-6, 1996, pages 413–422. ACM Press, 1996.

[24] Moerkotte G. Claußen J., Kemper A. and K. Peithner. Optimizing
queries with universal quantification in object-oriented and object-
relational databases. In VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29, 1997, Athens,
Greece, pages 286–295. Morgan Kaufmann, 1997.

[25] E. Clementini, P. Felice Di, and P. Oosterom van. A Small Set of
Formal Topological Relationships Suitable for End-user Interaction.
In SSD: Advances in Spatial Databases. LNCS, Springer-Verlag, 1993.

[26] Computer Associates. Jasmine ii: The intelligent information infras-
tructure.

[27] G. Copeland and S. Khoshafian. A Decomposed Storage Model. In
Proc. ACM SIGMOD Conf., page 268, Austin, TX, May 1985.

[28] J. M. Corridoni, A. Del Bimbo, and P. Pala. Image retrieval by color
semantics. ACM Multimedia Systems 7(3), pages 175–183, 1999.

[29] Rafiei D. On similarity-based queries for time series data. In Conf.
ICDE’99, pages 410–417, 1997.

[30] Rafiei D. and A.O. Mendelzon. Similarity-based queries for time series
data. In SIGMOD Conf, pages 13–25, 1997.

[31] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and
Applied Mathematics, 1992.

[32] A.P. de Vries. Content and multimedia database management sys-
tems. PhD thesis, University of Twente, Enschede, The Netherlands,
December 1999.

[33] D. DeWitt, D. Lieuwen, and M. Metha. Pointer-based join techniques
for object-oriented databases. In PDIS, 1993.

[34] D. DeWitt, J. Naughton, and D. Schneider. An evaluation of non-
equijoin algorithms. In Int. Conf. on Very Large Databases (VLDB)
Barcelona, Spain, pages 443–452, 1991.

[35] M. C. d’Ornellas and N.J.Nes. Image retrieval using linear greyscale
granulometries. In In ASCI conference, Lommel, Belgium, pages 109–
114, 1998.

[36] M. C. d’Ornellas and N.J.Nes. Color image texture indexing. In In
Visual’99 conference, Amsterdam, The Netherlands, 1999.

150 BIBLIOGRAPHY

[37] M. C. d’Ornellas, R. v.d. Boomgaard, and J. Geusebroek. Morpho-
logical algorithms for color images based on a generic-programming
approach. In Proceedings of the Brazilian Conference on Computer
Graphics and Image Processing (SIBGRAPI’98), pages 323–330, Rio
de Janeiro, 1998. IEEE Press.

[38] Boris Shidlovsky Elisa Bertino, Barbara Catania. Towards optimal
indexing for segment databases. In EDBT(Spain), pages 39–53, 1998.

[39] A. Etemadi. Robust segmentation of edge data. In Proc. of the 4th in-
ternational conference on image processing and its applications, 1992.

[40] A. Etemadi, J-P. Schmidt, J. Illingworth, and J. Kittler. Low-level
grouping of straight line segments. In Proc. of the British machine
vision conference, 1991.

[41] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack,
D. Petkovic, and W. Equitz. Efficient and Effective Querying by Image
Content. Intelligent Information Systems 3, pages 231–262, 1994.

[42] C. Faloutsos and et.al. Efficient and effective querying by image con-
tent. Journal of Intelligent Information Systems, 3:231–262, 1994.

[43] C. Frankel, M. J. Swain, and V. Athitsos. Webseer: An image search
engine for the world wide web. Technical report, University of Chicago,
1996.

[44] H. Freeman. On the encoding of arbitrary geometric configurations.
Transactions on electronic computers, 10:260–268, jun 1961.

[45] T. Gevers. Color in image search engines. Multimedia Search, 2000.

[46] T. Gevers and A. W. M. Smeulders. Evaluating Color and Shape
Invariant Image Indexing for Consumer Photography. In Proc. of the
First International Conference on Visual Information Systems, pages
293–302, 1996.

[47] T. Gevers, A.W.M. Smeulders, and H. Stokman. Photometric in-
variant region detection. In P. H. Lewis and M. S. Nixon, editors,
Proceedings of The Ninth British Machine Vision Conference, pages
659–670, 1998.

[48] S W Golomb. Run-Length Encodings. IEEE Transactions on Infor-
mation Theory 12(3), pages 399–401, july 1966.

[49] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.
Addison-Wesley, Reading, MA, USA, 3rd edition, 1992.

BIBLIOGRAPHY 151

[50] G. Graefe. Encapsulation of parallelism in the volcano query process-
ing system. In 19 ACM SIGMOD Conf. on the Management of Data,
Atlantic City, May 1990.

[51] R. H. Güting. Gral: An extensible relational database system for
geometric applications”. In Proceedings of the 15th Conference on Very
Large Databases, Morgan Kaufman pubs. (Los Altos CA), Amsterdam,
August 1989.

[52] A. Guttman. R-trees: a dynamic index structure for spatial searching.
Proc. ACM SIGMOD, pages 47–57, 1984.

[53] Lu H., Ooi B.-C, and Tan K.-L. Efficient image retrieval by color
content. Dept of Information Systems and Computer Science, National
University of Singapore, 1994.

[54] M. Holsheimer, M.L. Kersten, and H. Mannila. A perspective on data-
bases and data mining. In Knowledge Discovery in Database (KDD95),
Montreal, (Can.), 1995.

[55] The tpc benchmark series.

[56] IBM. DB2 Universal Server.

[57] Informix. The Informix Universal Server.

[58] Y. Ishikawa, R. Subramanya, and C. Faloutsos. Mindreader: Query-
ing databases through multiple examples. In Proceedings of the 24th
VLDB Conference, New York, USA, 1998.

[59] C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast multiresolution
image querying. In In proceedings of SIGGRAPH 95, Los Angels,
1995.

[60] Bernd Jähne. Digital Image Processing: Concepts, Algorithms, and
Scientific Applications. Springer-Verlag, Berlin, Germany, 2 edition,
1993.

[61] Anil K. Jain. Fundamentals of Digital Image Processing. Prentice-
Hall, Englewood Cliffs, NJ, 1989.

[62] R. Jain. Visual information management—introduction. Communica-
tions of the ACM, 40(12):31–32, December 1997.

[63] R. Jain, S. Murthy, P. Chen, and S. Chatterjee. Similarity Measures
for Image Databases. In SPIE, Storage and Retrieval for Image and
Video Databases III, pages 58–65, 1995.

152 BIBLIOGRAPHY

[64] A. Jonk and A.W.M. Smeulders. An axiomatic approach to cluster-
ing line-segments. In Proc. of the Third International Conference on
Document Analysis and Recognition, pages 386–389, 1995.

[65] J. Kender. Saturation, hue and normalized color: calculation digiti-
zation, and use. Computer science technical report, Carnegie-Melloni
University, 1976.

[66] M.L. Kersten and N.J. Nes. Fitness join is the ballroom. In CWI
report, July 1998.

[67] M. Kitsuregawa, M. Nakayama, and M. Takagi. The effect of bucket
size tuning in the dynamic hybrid grace hash join method. In Int.
Conf. on Very Large Databases (VLDB), pages 257–266, 1989.

[68] C. Kohl and J. Mundy. The development of the image understanding
environment. In Proceedings of the Conference on Computer Vision
and Pattern Recognition, 1994.

[69] King-Ip Lin, H. V. Jagadish, and Christos Faloutsos. The TV-tree: An
index structure for high-dimensional data. VLDB Journal, 3(4):517–
542, Januari 1994.

[70] Hong-Chih Liu and M. D Srinath. Corner Detection from Chain-Code.
Pattern Recognition(1-2), 1990, 23:51–68, 1990.

[71] B. B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman
and Co., New York, rev 1983.

[72] J. McPherson and H. Pirahesh. An overview of extensibility in star-
burst. IEEE Database Engineering, vol. 10, no. 2, pages 32–39, june
1987.

[73] P. Mishra and M.H. Eich. Join processing in relational databases.
ACM Computing Surveys, 24(1):63–113, 1989.

[74] A. H. Munsell. A color notation. Technical report, Munsell Color
Group, 1905.

[75] M. Nabil, A.H.H Ngu, and J. Shepherd. Picture similarity retrieval us-
ing the 2d projection interval representation. IEEE Trans. Knowledge
and Data Engineering, Vol 8, nr 4, pages 533–539, August 1996.

[76] P.F.M. Nacken. A metric on line segments. IEEE PAMI 15(11), pages
1312–1318, 1993.

[77] N.J. Nes, C. van den Berg, and M.L. Kersten. Database support
for image retrieval using spatial-color features. In First International

BIBLIOGRAPHY 153

Workshop on Image Databases and Multi-Media Search, pages 210–
217, Aug 1996.

[78] N.J. Nes, C. van den Berg, and M.L. Kersten. Database support for
image retrieval using spatial-color features. In Image Databases and
Multi-Media Search, pages 293–300. World Scientific, August 1997.

[79] N.J. Nes and M.L. Kersten. Region-based indexing in an image data-
base. In The International Conference on Imaging Science, Systems,
and Technology, Las Vegas, pages 207–215, June 1997.

[80] N.J. Nes and M.L. Kersten. The acoi algebra: A query algebra for
image retrieval systems. In BNCOD’16, cardiff, pages 77–88, July
1998.

[81] N.J. Nes, M.L. Kersten, and A. Jonk. Database support for line clus-
tering. In ASCI conference, Vosse-Meren, Belgium, pages 277–282,
June 1996.

[82] N.J. Nes, W. Quak, and M.L. Kersten. Metric indexing to improve
distance joins. In ASCI conference, Lommel, Belgium, pages 133–139,
June 1998.

[83] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An
adaptable, symmetric multi-key file structure. In Conference of the
European Cooperation in Informatics, pages 236–251, 1981.

[84] Oracle. Oracle 8 user manual.

[85] John K. Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, Reading,
1994.

[86] A. Pentland, B. Moghaddam, and T. Starner. View-based and modular
eigenspaces for face recognition. In IEEE Conference on Computer
Vision and Pattern Recognition, July 1994.

[87] A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: Content-based
manipulation of image databases. In SPIE Storage and Retrieval for
Image and Video Databases II, No. 2185, pages 34–47, 1994.

[88] Piatetsky-Shapiro and Frawley, editors. Data Surveyor: Searching the
Nuggets in Parallel, chapter 4. MIT Press, Menlo Park, California,
1995. M. Holsheimer and M.L. Kersten and A. Siebes.

[89] E. M. Riseman and M. A. Arbib. Computational Techniques in the
Visual Segmentation of Static Scenes. Computer Graphics and Image
Processing, 6(3):221–276, June 1977.

[90] G. X. Ritter. Image Algebra. North-Holland, 1993.

154 BIBLIOGRAPHY

[91] Y. Rui, T. S. Huang, and S. F. Chang. Image retrieval past, present
and future. In Symposium MM I, 1997.

[92] H. Samet. The Design and Analysis of Spatial Data Structures. Ad-
dison Wesley, 1990.

[93] H. S. Sawhney and J. L. Hafner. Efficient color histogram indexing
for quadratic form distance functions. IBM report, 1993.

[94] Wolfgang Scheufele and Guido Moerkotte. On the complexity of gen-
erating optimal plans with cross products. In Proceedings of the Six-
teenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 12-14, 1997, Tucson, Arizona, pages 238–248.
ACM Press, 1997.

[95] J. Segman and Y. Y. Zeevi. Spherical wavelets and their applications
to image representation. Journal of Visual Communication and Image
Representation, 4(3):263–70, 1993.

[96] T. Seidl and H-P. Kriegel. Efficient user-adaptable similarity search in
large multimedia databases. In VLDB’97, Proceedings of 23rd Inter-
national Conference on Very Large Data Bases, August 25-29, 1997,
Athens, Greece, pages 500–515. Morgan Kaufmann, 1997.

[97] S.Helmer and G.Moerkotte. Evaluation of main memory join algo-
rithms for joins with subset join predicates. In VLDB’97, Proceedings
of 23rd International Conference on Very Large Data Bases, August
25-29, 1997, Athens, Greece, pages 386–395. Morgan Kaufmann, 1997.

[98] Chang S.K., Shi Q.Y., and Yan C.W. Iconic indexing by 2d strings.
IEEE Trans. Pattern Analysis and Machine Intelligence , Vol 9, nr 3,
pages 413–428, May 1987.

[99] J. R. Smith and S. Chang. Quad-tree segmentation for texture-based
image query. In ACM Multimedia, pages 279–286, 1994.

[100] J. R. Smith and S. Chang. Tools and Techniques for Color Image Re-
trieval. In SPIE Storage and Retrieval for Image and Video Databases
IV, No 2670, 1996.

[101] J. R. Smith and S. Chang. Tools and Techniques for Color Image
Retrieval. In Storage and Retrieval for Image and Video Databases
(SPIE), pages 426–437, 1996.

[102] J. R. Smith and S. Chang. Visualseek: A fully automated content-
based image query system. In ACM Multimedia, pages 87–98, 1996.

BIBLIOGRAPHY 155

[103] M. Stonebraker and G. Kemnitz. The POSTGRES next-generation
database management system. Comm. of the ACM, Special Section
on Next-Generation Database Systems, 34(10):78, October 1991.

[104] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-
Cambridge Press, 1996.

[105] Sun Micro Systems. The Java 2DTM API.

[106] Swain and Ballard. Color indexing. International Journal of Computer
Vision, 7, 1991.

[107] H. Talbot, C. Evans, and R. Jones. Complete ordering and multivari-
ate mathematical morphology: Algorithms and applications. In Pro-
ceedings of the International Symposium on Mathematical Morphology
(ISMM’98), pages 27–34. Kluwer Academic Publishers, Amsterdam,
1998.

[108] S. L. Tanimoto and T. Pavlidis. A Hierarchical Data Structure for Pic-
ture Processing. Computer Graphics and Image Processing, 4(2):104–
119, June 1975.

[109] L. Uhr. Layered recognition cone networks that preprocess, classify,
and describe. IEEE Transactions on Computers, 21:758–768, 1972.

[110] http://www.wins.uva.nl/research/isis/isisns.html.

[111] P. Valduriez. Join indices. ACM Trans. on Database Systems,
12(2):13–18, Dec 1994.

[112] Carel van den Berg, Rein van den Boomgaard, Marcel Worring, Dennis
Koelma, and Arnold Smeulders. Horus: Integration of image process-
ing and database paradigms. In Image Databases and Multi-Media
Search, pages 309–317. World Scientific, August 1997.

[113] C. J. van Rijsbergen. The best-match problem in document retrieval.
Communications of the ACM 17(11), pages 648–649, 1974.

[114] M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice
Hall, 1995.

[115] J. Z. Wang, G. Wiederhold, O Firschein, and S. X. Wei. Wavelet-based
image indexing techniques with partial sketch retrieval capability. In In
proceedings of the Fourth Forum on Research and Technology Advances
in Digital Libraries. IEEE, 1997.

[116] J. Z. Wang, G. Wiederhold, O Firschein, and S. X. Wei. Content-
based image indexing and searching using daubechies’ wavelets. In-
ternational Journal of Digital Libraries 1 (4), pages 311–328, 1998.

156 BIBLIOGRAPHY

[117] Aref. W.G., Barbara D., and D. Lopresti. Ink as a First-Class
Datatype in Multimedia Databases. Multimedia Database Systems,
pages 113–160, 1996.

[118] David A. White and Ramesh Jain. Similarity indexing with the SS-
tree. Proc. 12th IEEE International Conference on Data Engineering,
pages 516–523, 2 1996.

[119] M. A. Windhouwer, A. R. Schmidt, and M. L. Kersten. Acoi: A
System for Indexing Multimedia Objects. In International Workshop
on Information Integration and Web-based Applications and Services,
Yogyakarta, Indonesia, November 1999.

[120] Yamamuro, M. K. Kushima, H. Kimoto, H. Akama, S. Konya, J. Nak-
agawa, K. Mii, N. Taniguchi, and K. Curtis. Exsight-multimedia infor-
mation retrieval system. In 20th Annual Pacific Telecommunications
Conference, pages 734–739, Honolulu, HI, Jan 1998.

	Introduction
	RDBMS vs IDBMS
	Contributions and Thesis Outline

	Image Databases
	Multi-Media Database Systems
	Image Storage
	Image Operations
	Features
	Image Semantics
	Image Queries

	DBMS
	Extensible
	Main Memory
	Objects versus Sets

	Architecture of Monet
	Monet Architecture
	Monet Interface Language
	Monet Extension Language
	new primitives
	NewSearchAccelerators

	State of the Art of Image Database Systems
	Commercial Image Databases
	Commercial Image Retrieval Systems
	Research Image Retrieval Systems
	Image indexing techniques
	Requirements

	Database Assisted Image Processing
	Data Structures
	Primitives
	Benefits of BAT representation
	Image Integration
	Simplification of Data Structures
	Query Optimization
	Parallelism
	Performance and Storage Improvements

	Experiments
	Requirements
	Conclusions

	The Image Retrieval Algebra
	Introduction
	Image Retrieval by Content
	Multi-Level Signature
	Data Model for MLS Image Database
	Stop Condition
	Querying the image database
	Prototype and Experiment
	Conclusion

	Segment Image Indexing
	Segment Indexing
	The Query Primitives
	Experimental results
	Conclusions
	Image Retrieval Algebra
	Logical Image Data Model
	 Physical Segment Representation

	Algebraic Primitives
	Acoi Image Retrieval Benchmark
	Initial Performance Assessment
	Conclusions

	Image Analysis: A case study
	The line clustering problem
	Clustering Hierarchy
	Clustering Factors
	Clustering Function

	Database Optimization
	Mathematical Optimization
	Split based algorithm

	A hybrid solution
	Database representation
	Data Model
	Clustering Algorithm

	Database Solution
	Line cluster model
	Experiments and Results

	Conclusion

	Fitness Join
	Introduction
	Motivation
	The Ballroom Example
	Fitness Joins
	Application domains

	Fitness Join Algorithms
	SQL Framework
	Monet solutions

	Query Optimization Schemes
	Mathematical Query Optimization
	Data structures for fitness joins

	Evaluation
	Dance partners by age
	Dance partners by repertoire match

	Conclusion

	Metric Indexing
	Introduction
	Index Structures for Spatial Joins
	Triangular Inequality
	Using the Triangular Inequality

	Metric index structure
	The reference points
	The optimized distance select

	Effectiveness of the metric index
	Experimentation
	Conclusions

	Summary
	General Research Directions

